Assignment 3, Math 4GR3
Due Mar. 14, uploaded to Avenue

1. Let's finish the analysis of a group of order 12 started in class. Recall that we argued that if G has order 12 then it must have either a 2 Sylow normal subgroup N of size 4 or a 3 -Sylow normal subgroup of size 3 . Let H be a 3 -Sylow (respectively 2-Sylow) subgroup in these two cases and note that $G=N H$. In both cases, H will act on N by conjugation so there is a homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$. In class we also said that if this homomorphism was trivial i.e. was identically equal to the identity element then $G \cong N \times H$ and so we would be looking at one of two possible abelian examples: $C_{2} \times C_{2} \times C_{3}$ and $C_{4} \times C_{3}$. We concentrate then on the cases where φ is not trivial.
(a) Case 1: In this case, let's suppose that H is of size 3 and N is normal of size 4. So $H \cong C_{3}$ and N is isomorphic to C_{4} or $C_{2} \times C_{2}$. Show that the automorphism group of C_{4} is isomorphic to C_{2} and conclude there is no non-trivial homomorphism from H to $\operatorname{Aut}(N)$ in this case. Now we consider the automorphism group of $C_{2} \times C_{2}$. Conclude that it is non-abelian of size 6 and hence is S_{3}. Describe a non-trivial homomorphism from C_{3} to S_{3} and argue, up to isomorphism, there is only one such. Use this information to write down a group of order 12 .
(b) Case 2: In this case, suppose that H has size 4 and N is normal of size 3. So H is isomorphic to $C_{2} \times C_{2}$ or C_{4} and $\operatorname{Aut}(N)$ is isomorphic to C_{2}. In each of these cases, convince yourself that up to isomorphism there is only one non-trivial homomorphism from H to $\operatorname{Aut}(N)$ and write down the two non-abelian groups of order 12 that arise.
2. Show that H_{8} is not a semi-direct product. H_{8} is the quaterion group and contains 8 elements: $\{ \pm 1, \pm i, \pm j, \pm k\}$ and satisfies the following rules
$(-1)^{2}=1, i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j$ and $k i=j=-i k$.
Hint: If $H_{8} \cong N \rtimes A$ then there is a normal subgroup of H_{8}, let's also call it N; how big is it? Show that if N were of size 2 then H_{8} would be abelian (which it is not). Then argue that it can't be of size 4 by looking at elements of order 2 .
3. Judson, chapter $17, \# 18,20,21,25$
