
Assignment 3, Math 4GR3
Due Mar. 14, uploaded to Avenue

1. Let’s finish the analysis of a group of order 12 started in class. Recall
that we argued that if G has order 12 then it must have either a 2-
Sylow normal subgroup N of size 4 or a 3-Sylow normal subgroup of
size 3. Let H be a 3-Sylow (respectively 2-Sylow) subgroup in these
two cases and note that G = NH. In both cases, H will act on N
by conjugation so there is a homomorphism ϕ : H → Aut(N). In class
we also said that if this homomorphism was trivial i.e. was identically
equal to the identity element then G ∼= N × H and so we would be
looking at one of two possible abelian examples: C2 × C2 × C3 and
C4 × C3. We concentrate then on the cases where ϕ is not trivial.

(a) Case 1: In this case, let’s suppose that H is of size 3 and N
is normal of size 4. So H ∼= C3 and N is isomorphic to C4 or
C2 × C2. Show that the automorphism group of C4 is isomorphic
to C2 and conclude there is no non-trivial homomorphism from
H to Aut(N) in this case. Now we consider the automorphism
group of C2 × C2. Conclude that it is non-abelian of size 6 and
hence is S3. Describe a non-trivial homomorphism from C3 to S3

and argue, up to isomorphism, there is only one such. Use this
information to write down a group of order 12.

(b) Case 2: In this case, suppose that H has size 4 and N is normal
of size 3. So H is isomorphic to C2 × C2 or C4 and Aut(N) is
isomorphic to C2. In each of these cases, convince yourself that
up to isomorphism there is only one non-trivial homomorphism
from H to Aut(N) and write down the two non-abelian groups of
order 12 that arise.

Solution I’ll repeat things said above so that you will have everything
in one place:

(a) Suppose that G is a group with 12 elements. There is a 2-Sylow
subgroup of size 4 and a 3-Sylow subgroup of size 3. We showed
in class using the third Sylow theorem that either the 3-Sylow
subgroup is normal or there are exactly 4 3-Sylow subgroups. In
the latter case, the 2-Sylow subgroup is normal. From this we
conclude that there are Sylow subgroups A and B such that G =



AB and A is a normal subgroup. It follows that G is a semi-direct
product of A with B. It is possible that B is also normal which
we will consider as part of the cases below.

(b) Case 1: Assume that A is a 3-Sylow subgroup. Then the auto-
morphism group of A is isomorphic to C2 (the automorphisms are
the identity map and the map that sends x to −x). B has size
4 and so is abelian i.e. B is isomorphic to C2 × C2 or C4. In
order to determine what possible semi-direct products we get in
this situation then, we need to determine what possible homomor-
phisms ϕ we could have from B to Aut(A) so, up to isomorphism,
from C2 ×C2 or C4 to C2. The first possibility is that ϕ is trivial
i.e. always gives us the identity map. In this case then G is just
A × B and so is abelian. In this way, up to isomorphism, we get
C3 × C2 × C2 or C3 × C4.

(c) Still in case 1: Now suppose that we are considering B to be
C2 × C2. If ϕ is not trivial then it is onto in this case and has
a kernel of size 2. Up to isomorphism, we can assume that ϕ is
the projection onto the first coordinate. So G ∼= C3 oϕ (C2 × C2)
which one can see is S3 × C2. We don’t need this last statement
(although it is true) since the critical thing is that G is non-abelian
and G/A is isomorphic to C2 × C2.

(d) If B is isomorphic to C4 then there is, up to isomorphism, only
one non-trivial homomorphism from C4 to C2 and so with this
choice of ϕ we obtain G ∼= C3oϕC4. This is non-abelian and G/A
is isomorphic to C4.

(e) Case 2: The 2-Sylow subgroup is normal. This would mean that
A is isomorphic to C2 × C2 or C4 and B is isomorphic to C3.
Again, what matters are homomorphisms ϕ from B to Aut(A).
If ϕ is trivial then as above, the product is actually direct and
G is abelian. We have characterized all the abelian cases up to
isomorphism so let’s assume that ϕ is non-trivial. If we consider
the case where A is C4 then Aut(C4) is C2. There is no non-trivial
homomorphism from C3 to C2 (elements of order 3 would have to
go to elements of order 3) and so this case does not occur.

(f) The remaining case is when A is C2 × C2 and B is C3. The
automorphism group of C2 × C2 is S3. The sophisticated way to



see this is that this is a vector space of dimension 2 over the field
with 2 elements. The automorphisms then are just 2 x 2 matrices
with non-zero determinant. Less theoretically, any two non-zero
elements of C2 × C2 act as generators of this group. If e1 and e2
are the two standard generators then there are 3 choices where an
automorphism could send e1 and then 2 places it could send e2.
This means that the automorphism group has size 6 and easily it
is not abelian so it is S3. Now up to isomorphism, there is only
one non-trivial map from C3 to S3 (it sends a generator of C3 to
a 3-cycle in S3. If we call this map ϕ then G ∼= A oϕ B and its
isomorphism type is determined by the fact that A is isomorphic
to C2 × C2 and G is non-abelian.

2. Show that H8 is not a semi-direct product. H8 is the quaterion group
and contains 8 elements: {±1,±i,±j,±k} and satisfies the following
rules

(−1)2 = 1, i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj and ki = j = −ik.

Hint: If H8
∼= N o A then there is a normal subgroup of H8, let’s also

call it N ; how big is it? Show that if N were of size 2 then H8 would
be abelian (which it is not). Then argue that it can’t be of size 4 by
looking at elements of order 2.

Solution As the hint says, how big is N? If N has size 2 then N ∼= C2

and Aut(N) is the trivial group. This would mean that the semi-direct
product would be direct and H8 would be abelian (which it is not). So
this leaves the possibility that N has size 4 and H has size 2. But then
N would contain an element of order 2 (N would be either isomorphic
to C4 or C2×C2). But among the 8 elements of H8, only −1 has order
2 so this element must be in N . But H also contains an element of
order 2 so H is contained in N which it can’t be if we have a semi-direct
product. So H8 cannot be represented as a semi-direct product.

3. Judson, chapter 17, # 18: Let p(x) = anx
n+. . .+a1x+a0 be an integer

polynomial and suppose that p(r/s) = 0 for integers r and s with gcd
1. Show that r divides a0 and s divides an.

Solution: We are given

an(
rn

sn
) + . . . + a1

r

s
+ a0 = 0.



Multiply through by sn to get

anr
n + . . . + rsn−1 + sna0 = 0.

Now pick any prime power pk which divides r. Since the gcd of r and s
is 1, from the last equation we see that pk divides sna0. Since the gcd
of pk and sn is 1, pk must divide a0. Since this is true of all factors of
r, r divides a0. A similar argument shows that s divides an.

4. # 20 Suppose p is prime and Φp(x) = xp−1 + xp−2 + . . . + x + 1. Show
that Φp is irreducible over Q.

Solution: No one asked me about this question so I assume everyone
found the trick somewhere. We use Eisenstein applied to the polyno-
mial Φp(x + 1).

Φp(x + 1) =
(x + 1)p − 1

(x + 1)− 1
=

p∑
k=1

(
p

k

)
xk−1.

by the binomial theorem. The lead coefficient is 1 and all other co-
efficients are

(
p
k

)
for 0 < k < p. Since p is prime, p divides

(
p
k

)
for

0 < k < p and since the constant term is
(
p
1

)
, p2 does not divide it.

So by Eisenstein, Φp(x + 1) is irreducible over the rationals. But if Φp

was reducible, say Φp = fg for polynomials f and g of lower degree
then Φp(x + 1) = f(x + 1)g(x + 1) and f(x + 1), g(x + 1) still have
lower degree than Φp(x + 1) which contradicts its irreducibility over
the rationals.

5. # 21 Show that for any field F , there are infinitely many irreducible
polynomials over F in F [x].

Solutions: Ah, Euclid! Suppose that there are only finitely many
polynomials f1, . . . , fn which are irreducible over F . Consider

g = f1f2 . . . fn + 1.

If you divide g by fi for any i then you will be left with a remainder
of 1 so fi does not divide g for any i. So if g is irreducible over F then
it was not included in our list. If g is not irreducible then none of its
irreducible factors was in our list. Either way, the original list did not
contain all irreducible polynomials over F .



6. # 25 Define a function D on F [x] as follows:

D(anx
n+an−1x

n−1+. . .+a1x+a0) = nanx
n−1+(n−1)an−1x

n2+. . .+a1.

(a) D is a homomorphism of abelian groups: Suppose that

f = anx
n + an−1x

n−1 + . . . + a1x + a0

and
g = bmx

m + bm−1x
m−1 + . . . + b1x + b0.

By adding 0’s as coefficients, we can assume m = n to make the
notation simpler. Then

D(f + g) = n(an + bn)xn−1] + . . . + (a1 + b1)

which equals

(nanx
n−1 + . . . a1) + (nbnx

n−1 + . . . b1)

which of course is D(f) + D(g).

(b) If the characteristic of F is 0, the only polynomials in the kernel
are the constant polynomials.

(c) if the characteristic of F is p then all polynomials of the form

anx
pn + . . . + a1x

p + a0

for some n are in the kernel of D since p = 0 in F .

(d) Suppose that f and g are as above. The coefficient of xk in fg is

k∑
j=0

ajbk−j

and so the coefficient of xk−1 in D(fg) is

k

k∑
j=0

ajbk−j.

On the other hand the coefficient of xk−1 in D(f)g + fD(g) is

k∑
j=0

jajbk−j +
k∑

j=0

(k − j)ajbk−j

and if you bring these summations together, you see that D(fg) =
D(f)g + fD(g).



(e) Finally, suppose that f is a product of linear factors and some
constant. We want to show that f has no multiple roots iff f and
D(f) have no common divisor. Assume that f has a multiple root.
That would mean that we can write f = (x−a)2g for some a ∈ F
and g ∈ F [x]. From what we have proved about the derivation, it
follows that D(f) = 2(x− a)g + (x− a)2D(g) and so (x− a) is a
common divisor of f and D(f).

In the other direction, suppose that f = u(x−a1) . . . (x−an) with
all the ai’s distinct. Then it follows that D(f) is

u(x− a2) . . . (x− an) + u(x− a1)(x− a3) . . . (x− an)

+ . . . + u(x− a1) . . . (x− xn−1)

where each term in the expression above is missing one of the
linear factors. If f and D(f) have a common divisor then they
have a common linear divisor. Without loss we may assume that
it is (x − a1). From the expression above, we see that (x − a1)
divides all the terms of D(f) except the first one. If we divide the
first term by (x− a1), this is the same as evaluating it at a1 and
we get a remainder of

u(a1 − a2) . . . (a1 − an).

Since all the ai’s are distinct this is not zero and so (x− a1) does
not divide D(f). We conclude that f and D(f) have no common
factors.


