Assignment 3, Math 4GR3
Due Mar. 14, uploaded to Avenue

1. Let's finish the analysis of a group of order 12 started in class. Recall that we argued that if G has order 12 then it must have either a 2Sylow normal subgroup N of size 4 or a 3 -Sylow normal subgroup of size 3 . Let H be a 3 -Sylow (respectively 2-Sylow) subgroup in these two cases and note that $G=N H$. In both cases, H will act on N by conjugation so there is a homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$. In class we also said that if this homomorphism was trivial i.e. was identically equal to the identity element then $G \cong N \times H$ and so we would be looking at one of two possible abelian examples: $C_{2} \times C_{2} \times C_{3}$ and $C_{4} \times C_{3}$. We concentrate then on the cases where φ is not trivial.
(a) Case 1: In this case, let's suppose that H is of size 3 and N is normal of size 4. So $H \cong C_{3}$ and N is isomorphic to C_{4} or $C_{2} \times C_{2}$. Show that the automorphism group of C_{4} is isomorphic to C_{2} and conclude there is no non-trivial homomorphism from H to $\operatorname{Aut}(N)$ in this case. Now we consider the automorphism group of $C_{2} \times C_{2}$. Conclude that it is non-abelian of size 6 and hence is S_{3}. Describe a non-trivial homomorphism from C_{3} to S_{3} and argue, up to isomorphism, there is only one such. Use this information to write down a group of order 12 .
(b) Case 2: In this case, suppose that H has size 4 and N is normal of size 3. So H is isomorphic to $C_{2} \times C_{2}$ or C_{4} and $\operatorname{Aut}(N)$ is isomorphic to C_{2}. In each of these cases, convince yourself that up to isomorphism there is only one non-trivial homomorphism from H to $\operatorname{Aut}(N)$ and write down the two non-abelian groups of order 12 that arise.

Solution I'll repeat things said above so that you will have everything in one place:
(a) Suppose that G is a group with 12 elements. There is a 2 -Sylow subgroup of size 4 and a 3 -Sylow subgroup of size 3. We showed in class using the third Sylow theorem that either the 3-Sylow subgroup is normal or there are exactly 43 -Sylow subgroups. In the latter case, the 2-Sylow subgroup is normal. From this we conclude that there are Sylow subgroups A and B such that $G=$
$A B$ and A is a normal subgroup. It follows that G is a semi-direct product of A with B. It is possible that B is also normal which we will consider as part of the cases below.
(b) Case 1: Assume that A is a 3 -Sylow subgroup. Then the automorphism group of A is isomorphic to C_{2} (the automorphisms are the identity map and the map that sends x to $-x)$. B has size 4 and so is abelian i.e. B is isomorphic to $C_{2} \times C_{2}$ or C_{4}. In order to determine what possible semi-direct products we get in this situation then, we need to determine what possible homomorphisms φ we could have from B to $\operatorname{Aut}(A)$ so, up to isomorphism, from $C_{2} \times C_{2}$ or C_{4} to C_{2}. The first possibility is that φ is trivial i.e. always gives us the identity map. In this case then G is just $A \times B$ and so is abelian. In this way, up to isomorphism, we get $C_{3} \times C_{2} \times C_{2}$ or $C_{3} \times C_{4}$.
(c) Still in case 1: Now suppose that we are considering B to be $C_{2} \times C_{2}$. If φ is not trivial then it is onto in this case and has a kernel of size 2. Up to isomorphism, we can assume that φ is the projection onto the first coordinate. So $G \cong C_{3} \rtimes_{\varphi}\left(C_{2} \times C_{2}\right)$ which one can see is $S_{3} \times C_{2}$. We don't need this last statement (although it is true) since the critical thing is that G is non-abelian and G / A is isomorphic to $C_{2} \times C_{2}$.
(d) If B is isomorphic to C_{4} then there is, up to isomorphism, only one non-trivial homomorphism from C_{4} to C_{2} and so with this choice of φ we obtain $G \cong C_{3} \rtimes_{\varphi} C_{4}$. This is non-abelian and G / A is isomorphic to C_{4}.
(e) Case 2: The 2-Sylow subgroup is normal. This would mean that A is isomorphic to $C_{2} \times C_{2}$ or C_{4} and B is isomorphic to C_{3}. Again, what matters are homomorphisms φ from B to $\operatorname{Aut}(A)$. If φ is trivial then as above, the product is actually direct and G is abelian. We have characterized all the abelian cases up to isomorphism so let's assume that φ is non-trivial. If we consider the case where A is C_{4} then $\operatorname{Aut}\left(C_{4}\right)$ is C_{2}. There is no non-trivial homomorphism from C_{3} to C_{2} (elements of order 3 would have to go to elements of order 3) and so this case does not occur.
(f) The remaining case is when A is $C_{2} \times C_{2}$ and B is C_{3}. The automorphism group of $C_{2} \times C_{2}$ is S_{3}. The sophisticated way to
see this is that this is a vector space of dimension 2 over the field with 2 elements. The automorphisms then are just 2×2 matrices with non-zero determinant. Less theoretically, any two non-zero elements of $C_{2} \times C_{2}$ act as generators of this group. If e_{1} and e_{2} are the two standard generators then there are 3 choices where an automorphism could send e_{1} and then 2 places it could send e_{2}. This means that the automorphism group has size 6 and easily it is not abelian so it is S_{3}. Now up to isomorphism, there is only one non-trivial map from C_{3} to S_{3} (it sends a generator of C_{3} to a 3 -cycle in S_{3}. If we call this map φ then $G \cong A \rtimes_{\varphi} B$ and its isomorphism type is determined by the fact that A is isomorphic to $C_{2} \times C_{2}$ and G is non-abelian.
2. Show that H_{8} is not a semi-direct product. H_{8} is the quaterion group and contains 8 elements: $\{ \pm 1, \pm i, \pm j, \pm k\}$ and satisfies the following rules
$(-1)^{2}=1, i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j$ and $k i=j=-i k$.
Hint: If $H_{8} \cong N \rtimes A$ then there is a normal subgroup of H_{8}, let's also call it N; how big is it? Show that if N were of size 2 then H_{8} would be abelian (which it is not). Then argue that it can't be of size 4 by looking at elements of order 2.
Solution As the hint says, how big is N ? If N has size 2 then $N \cong C_{2}$ and $\operatorname{Aut}(N)$ is the trivial group. This would mean that the semi-direct product would be direct and H_{8} would be abelian (which it is not). So this leaves the possibility that N has size 4 and H has size 2. But then N would contain an element of order $2(N$ would be either isomorphic to C_{4} or $C_{2} \times C_{2}$). But among the 8 elements of H_{8}, only -1 has order 2 so this element must be in N. But H also contains an element of order 2 so H is contained in N which it can't be if we have a semi-direct product. So H_{8} cannot be represented as a semi-direct product.
3. Judson, chapter 17, \# 18: Let $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be an integer polynomial and suppose that $p(r / s)=0$ for integers r and s with gcd 1. Show that r divides a_{0} and s divides a_{n}.

Solution: We are given

$$
a_{n}\left(\frac{r^{n}}{s^{n}}\right)+\ldots+a_{1} \frac{r}{s}+a_{0}=0 .
$$

Multiply through by s^{n} to get

$$
a_{n} r^{n}+\ldots+r s^{n-1}+s^{n} a_{0}=0 .
$$

Now pick any prime power p^{k} which divides r. Since the gcd of r and s is 1 , from the last equation we see that p^{k} divides $s^{n} a_{0}$. Since the gcd of p^{k} and s^{n} is $1, p^{k}$ must divide a_{0}. Since this is true of all factors of r, r divides a_{0}. A similar argument shows that s divides a_{n}.
4. \# 20 Suppose p is prime and $\Phi_{p}(x)=x^{p-1}+x^{p-2}+\ldots+x+1$. Show that Φ_{p} is irreducible over Q.

Solution: No one asked me about this question so I assume everyone found the trick somewhere. We use Eisenstein applied to the polynomial $\Phi_{p}(x+1)$.

$$
\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{(x+1)-1}=\sum_{k=1}^{p}\binom{p}{k} x^{k-1}
$$

by the binomial theorem. The lead coefficient is 1 and all other coefficients are $\binom{p}{k}$ for $0<k<p$. Since p is prime, p divides $\binom{p}{k}$ for $0<k<p$ and since the constant term is $\binom{p}{1}, p^{2}$ does not divide it. So by Eisenstein, $\Phi_{p}(x+1)$ is irreducible over the rationals. But if Φ_{p} was reducible, say $\Phi_{p}=f g$ for polynomials f and g of lower degree then $\Phi_{p}(x+1)=f(x+1) g(x+1)$ and $f(x+1), g(x+1)$ still have lower degree than $\Phi_{p}(x+1)$ which contradicts its irreducibility over the rationals.
5. \# 21 Show that for any field F, there are infinitely many irreducible polynomials over F in $F[x]$.
Solutions: Ah, Euclid! Suppose that there are only finitely many polynomials f_{1}, \ldots, f_{n} which are irreducible over F. Consider

$$
g=f_{1} f_{2} \ldots f_{n}+1
$$

If you divide g by f_{i} for any i then you will be left with a remainder of 1 so f_{i} does not divide g for any i. So if g is irreducible over F then it was not included in our list. If g is not irreducible then none of its irreducible factors was in our list. Either way, the original list did not contain all irreducible polynomials over F.
6. \# 25 Define a function D on $F[x]$ as follows:
$D\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right)=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n_{2}}+\ldots+a_{1}$.
(a) D is a homomorphism of abelian groups: Suppose that

$$
f=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

and

$$
g=b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}
$$

By adding 0's as coefficients, we can assume $m=n$ to make the notation simpler. Then

$$
D(f+g)=n\left(a_{n}+b_{n}\right) x^{n-1]}+\ldots+\left(a_{1}+b_{1}\right)
$$

which equals

$$
\left(n a_{n} x^{n-1}+\ldots a_{1}\right)+\left(n b_{n} x^{n-1}+\ldots b_{1}\right)
$$

which of course is $D(f)+D(g)$.
(b) If the characteristic of F is 0 , the only polynomials in the kernel are the constant polynomials.
(c) if the characteristic of F is p then all polynomials of the form

$$
a_{n} x^{p n}+\ldots+a_{1} x^{p}+a_{0}
$$

for some n are in the kernel of D since $p=0$ in F.
(d) Suppose that f and g are as above. The coefficient of x^{k} in $f g$ is

$$
\sum_{j=0}^{k} a_{j} b_{k-j}
$$

and so the coefficient of x^{k-1} in $D(f g)$ is

$$
k \sum_{j=0}^{k} a_{j} b_{k-j}
$$

On the other hand the coefficient of x^{k-1} in $D(f) g+f D(g)$ is

$$
\sum_{j=0}^{k} j a_{j} b_{k-j}+\sum_{j=0}^{k}(k-j) a_{j} b_{k-j}
$$

and if you bring these summations together, you see that $D(f g)=$ $D(f) g+f D(g)$.
(e) Finally, suppose that f is a product of linear factors and some constant. We want to show that f has no multiple roots iff f and $D(f)$ have no common divisor. Assume that f has a multiple root. That would mean that we can write $f=(x-a)^{2} g$ for some $a \in F$ and $g \in F[x]$. From what we have proved about the derivation, it follows that $D(f)=2(x-a) g+(x-a)^{2} D(g)$ and so $(x-a)$ is a common divisor of f and $D(f)$.
In the other direction, suppose that $f=u\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)$ with all the a_{i} 's distinct. Then it follows that $D(f)$ is

$$
\begin{aligned}
u\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+u(x- & \left.a_{1}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right) \\
& +\ldots+u\left(x-a_{1}\right) \ldots\left(x-x_{n-1}\right)
\end{aligned}
$$

where each term in the expression above is missing one of the linear factors. If f and $D(f)$ have a common divisor then they have a common linear divisor. Without loss we may assume that it is $\left(x-a_{1}\right)$. From the expression above, we see that $\left(x-a_{1}\right)$ divides all the terms of $D(f)$ except the first one. If we divide the first term by $\left(x-a_{1}\right)$, this is the same as evaluating it at a_{1} and we get a remainder of

$$
u\left(a_{1}-a_{2}\right) \ldots\left(a_{1}-a_{n}\right)
$$

Since all the a_{i} 's are distinct this is not zero and so $\left(x-a_{1}\right)$ does not divide $D(f)$. We conclude that f and $D(f)$ have no common factors.

