Assignment 2, Math 4GR3

Due Feb. 14, uploaded to Avenue (Happy Valentines Day!)

1. Prove the following version of the second isomorphism theorem: Suppose G is a group with two normal subgroups H and K. Then

$$
H K / K \cong H /(H \cap K)
$$

Notice that it is enough that H normalizes K; that is, for every $h \in H$, $h K h^{-1}=K$.
Proof: As we showed in class, if H normalizes K then the smallest subgroup generated by H and K is $\{h k: h \in H, k \in K\}$. We then define a map from H to $H K / K$ by

$$
h \mapsto h K .
$$

This map is onto by the first sentence and its kernel is all $h \in H \cap K$. So by the first isomorphism theorem, $H K / K \cong H /(H \cap K)$.
2. (The third isomorphism theorem) Suppose that A and N are normal subgroups of G and that $A \subset N$. Prove that

$$
(G / A) /(N / A) \cong G / N
$$

Proof: Define a map from G / A to G / N by sending $g A$ to $g N$. Since $A \subset N$, this is well-defined and is onto. The kernel of this map is then all $g A$ such that $g \in N$. That is, the kernel is N / A and so by the first isomorphism theorem again, $(G / A) /(N / A) \cong G / N$.
3. (\# 11, chapter 13) Prove that if N is a normal subgroup of G and both N and G / N have composition series, then so does G.
Proof: Fix a composition series G_{i} for N and H_{j} for G / N. By the correspondence theorem, each H_{j} is of the form K_{j} / N for some subgroup K_{j} of G. We know that H_{j} is normal in H_{j+1}. Let's show that K_{j} is normal in K_{j+1}. If $g \in K_{j+1}$ then $g K_{j} g^{-1} / N=K_{j} / N$ which means $g K_{j} g^{-1}=K_{j}$ and so we get K_{j} is normal in K_{j+1}. Moreover, by the third isomorphism theorem,

$$
\left(K_{j+1} / N\right) /\left(K_{j} / N\right) \cong K_{j+1} / K_{j}
$$

and so consecutive quotients of K_{j} 's are simple. Concatenating the series K_{j} with G_{i}, we get a composition series of G.
4. (\#4, chapter 14) Suppose that G is the additive group of the reals and X is R^{2}, the plane. We will consider the plane in polar coordinates (r, α) which represents the point at distance r from the origin making an angle α with the x-axis. We define an action as follows:

$$
(\theta,(r, \alpha)) \mapsto(r, \theta+\alpha)
$$

To see that this is a group action, notice that 0 is the identify of R and adding 0 to the angle doesn't change it. If we apply θ_{1} and then θ_{2}, this is the same as applying $\theta_{1}+\theta_{2}$. These two facts demonstrate that this is a group action.

To see the orbit of any point on the plane, notice that the radius doesn't change under the action. So if $P=(r, \alpha)$ then the orbit of P is just the circle of radius r. The stabilizer of P is all multiples of 2π which is a subgroup of the additive reals.
5. (\# 20, chapter 14) Show that G acts faithfully on X iff no two elements of G have the same action on all elements of X.

Proof: Suppose that g and h both have the same action on every element of X i.e. $g x=h x$ for all $x \in X$. Then $g^{-1} h x=x$ for all $x \in X$. But if G acts faithfully then $g^{-1} h=e$. That is, $g=h$. This show left to right. In the other direction, if G is not faithful then there is some $g \neq e$ which fixes every $x \in X$. But then g and e are two elements with the same action on X.
6. (\# 23, chapter 14) Show that if $|G|=p^{n}$ for some prime p for some non-abelian group G then $Z(G)$ has few than p^{n-1} elements.
Proof If $Z(G)=G$ then G is abelian. Let's show that if $|Z(G)|=p^{n-1}$ then G is also abelian. We know $Z(G)$ is normal in G and if it has p^{n-1} elements then $G / Z(G) \cong C_{p}$. Pick $a \in G$ so that $a Z(G)$ is a generator of $G / Z(G)$. Every element of G then looks like $a^{k} b$ for some $k \in N$ and some $b \in Z(G)$. But then for $k, m \in N$ and $b, c \in Z(G)$ we have

$$
a^{k} b a^{m} c=a^{k} a^{m} b c=a^{m} a^{k} c b=a^{m} c a^{k} b
$$

which shows that G is abelian. So if G is not abelian then $|Z(G)|<$ p^{n-1}.
7. (Bonus question from Dr. Cousins) The Schroeder-Bernstein theorem says that if X and Y are two sets and there is an injection from X to Y and also an injection from Y to X then there is a bijection between X and Y. Prove or disprove the same thing for groups. That is, if G and H are groups such that $g: G \rightarrow H$ is an injective group homomorphism and $h: H \rightarrow G$ is also an injective group homomorphism then G and H are isomorphic.
Answer The Schroeder-Bernstein theorem is false for groups. The answer that most mathematician would give is that the free group on 2 generators contains a copy of the free group on countably many generators and these two groups can't be isomorphic. The problem with this answer is that you have to know what a free group is. Let me give you an abelian counter-example:

$$
C_{2} \oplus C_{4} \oplus C_{8} \oplus C_{16} \oplus \ldots
$$

and

$$
C_{4} \oplus C_{8} \oplus C_{16} \oplus \ldots
$$

where these groups are ones where there are only finitely many non-zero entries in each infinite tuple. Both groups are countable. The second group embeds into the first by sending $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ to ($0, x_{0}, x_{1}, \ldots$). The first embeds into the second by sending

$$
\left(x_{0}, x_{1}, x_{2}, \ldots\right) \text { to }\left(2 x_{0}, 2 x_{1}, 2 x_{2}, \ldots\right)
$$

where the multiplication by 2 occurs in the image. Now consider only elements of order 2 in each group. In the second group, every such element is also divisible by 2 . But in the first group $(1,0,0,0, \ldots)$ is of order 2 but not divisible by 2 . So these two groups are not isomorphic.

