
Assignment 2, Math 4GR3
Due Feb. 14, uploaded to Avenue (Happy Valentines Day!)

1. Prove the following version of the second isomorphism theorem: Sup-
pose G is a group with two normal subgroups H and K. Then

HK/K ∼= H/(H ∩K).

Notice that it is enough that H normalizes K; that is, for every h ∈ H,
hKh−1 = K.

Proof: As we showed in class, if H normalizes K then the smallest
subgroup generated by H and K is {hk : h ∈ H, k ∈ K}. We then
define a map from H to HK/K by

h 7→ hK.

This map is onto by the first sentence and its kernel is all h ∈ H ∩K.
So by the first isomorphism theorem, HK/K ∼= H/(H ∩K).

2. (The third isomorphism theorem) Suppose that A and N are normal
subgroups of G and that A ⊂ N . Prove that

(G/A)/(N/A) ∼= G/N.

Proof: Define a map from G/A to G/N by sending gA to gN . Since
A ⊂ N , this is well-defined and is onto. The kernel of this map is then
all gA such that g ∈ N . That is, the kernel is N/A and so by the first
isomorphism theorem again, (G/A)/(N/A) ∼= G/N.

3. (# 11, chapter 13) Prove that if N is a normal subgroup of G and both
N and G/N have composition series, then so does G.

Proof: Fix a composition series Gi for N and Hj for G/N . By the cor-
respondence theorem, each Hj is of the form Kj/N for some subgroup
Kj of G. We know that Hj is normal in Hj+1. Let’s show that Kj is
normal in Kj+1. If g ∈ Kj+1 then gKjg

−1/N = Kj/N which means
gKjg

−1 = Kj and so we get Kj is normal in Kj+1. Moreover, by the
third isomorphism theorem,

(Kj+1/N)/(Kj/N) ∼= Kj+1/Kj

and so consecutive quotients of Kj’s are simple. Concatenating the
series Kj with Gi, we get a composition series of G.



4. (#4, chapter 14) Suppose that G is the additive group of the reals and
X is R2, the plane. We will consider the plane in polar coordinates
(r, α) which represents the point at distance r from the origin making
an angle α with the x-axis. We define an action as follows:

(θ, (r, α)) 7→ (r, θ + α).

To see that this is a group action, notice that 0 is the identify of R and
adding 0 to the angle doesn’t change it. If we apply θ1 and then θ2,
this is the same as applying θ1 + θ2. These two facts demonstrate that
this is a group action.

To see the orbit of any point on the plane, notice that the radius doesn’t
change under the action. So if P = (r, α) then the orbit of P is just
the circle of radius r. The stabilizer of P is all multiples of 2π which is
a subgroup of the additive reals.

5. (# 20, chapter 14) Show that G acts faithfully on X iff no two elements
of G have the same action on all elements of X.

Proof: Suppose that g and h both have the same action on every
element of X i.e. gx = hx for all x ∈ X. Then g−1hx = x for all
x ∈ X. But if G acts faithfully then g−1h = e. That is, g = h. This
show left to right. In the other direction, if G is not faithful then there
is some g 6= e which fixes every x ∈ X. But then g and e are two
elements with the same action on X.

6. (# 23, chapter 14) Show that if |G| = pn for some prime p for some
non-abelian group G then Z(G) has few than pn−1 elements.

Proof If Z(G) = G then G is abelian. Let’s show that if |Z(G)| = pn−1

then G is also abelian. We know Z(G) is normal in G and if it has pn−1

elements then G/Z(G) ∼= Cp. Pick a ∈ G so that aZ(G) is a generator
of G/Z(G). Every element of G then looks like akb for some k ∈ N
and some b ∈ Z(G). But then for k,m ∈ N and b, c ∈ Z(G) we have

akbamc = akambc = amakcb = amcakb

which shows that G is abelian. So if G is not abelian then |Z(G)| <
pn−1.



7. (Bonus question from Dr. Cousins) The Schroeder-Bernstein theorem
says that if X and Y are two sets and there is an injection from X to Y
and also an injection from Y to X then there is a bijection between X
and Y . Prove or disprove the same thing for groups. That is, if G and
H are groups such that g:G→ H is an injective group homomorphism
and h:H → G is also an injective group homomorphism then G and H
are isomorphic.

Answer The Schroeder-Bernstein theorem is false for groups. The
answer that most mathematician would give is that the free group
on 2 generators contains a copy of the free group on countably many
generators and these two groups can’t be isomorphic. The problem
with this answer is that you have to know what a free group is. Let me
give you an abelian counter-example:

C2 ⊕ C4 ⊕ C8 ⊕ C16 ⊕ . . .

and
C4 ⊕ C8 ⊕ C16 ⊕ . . .

where these groups are ones where there are only finitely many non-zero
entries in each infinite tuple. Both groups are countable. The second
group embeds into the first by sending (x0, x1, x2, . . .) to (0, x0, x1, . . .).
The first embeds into the second by sending

(x0, x1, x2, . . .) to (2x0, 2x1, 2x2, . . .)

where the multiplication by 2 occurs in the image. Now consider only
elements of order 2 in each group. In the second group, every such
element is also divisible by 2. But in the first group (1, 0, 0, 0, . . .) is of
order 2 but not divisible by 2. So these two groups are not isomorphic.


