Assignment 1, Math 4GR3
Due Jan. 24, uploaded to Avenue

1. Suppose that A and B are two groups. In class we discussed the abstract notion of the product of two groups. That is, D together with two group homomorphisms $\rho_{A}: D \rightarrow A$ and $\rho_{B}: D \rightarrow B$ is a product of A and B if whenever C is a group and f and g are group homomorphisms are as pictured:

then there is a unique group homomorphism $h: C \rightarrow D$ such that $\rho_{A} \circ$ $h=f$ and $\rho_{B} \circ h=g$. Show that if $D^{\prime}, \rho_{A}^{\prime}$ and ρ_{B}^{\prime} is also a product of A and B then there is a unique isomorphism $i: D \rightarrow D^{\prime}$ such that $\rho_{A}=\rho_{A}^{\prime} \circ i$ and $\rho_{B}=\rho_{B}^{\prime} \circ i$.
2. Show that if we have groups G_{i} for $i \leq n$ and normal subgroups N_{i} of G_{i} for $i \leq n$ then

$$
G_{1} / N_{1} \times G_{2} / N_{2} \times \ldots G_{n} / N_{n} \cong\left(G_{1} \times \ldots \times G_{n}\right) /\left(N_{1} \times \ldots \times N_{n}\right)
$$

3. Prove that there is only one free abelian group up to isomorphism on n generators. That is, if F is a free abelian group on generators x_{1}, \ldots, x_{n} and G is a free abelian group on generators y_{1}, \ldots, y_{n} then there is a unique isomorphism $f: F \rightarrow G$ such that $f\left(x_{i}\right)=y_{i}$ for $i \leq n$.
4. Show that if A and B are abelian groups, $\varphi_{i}: A \rightarrow B$ are group homomorphisms for $i \leq n$ and $m_{1}, \ldots, m_{n} \in Z$ then

$$
m_{1} \varphi_{1}+\ldots+m_{n} \varphi_{n}
$$

is a group homomorphism from A to B.

