Assignment 1, Math 4GR3
Due Jan. 24, uploaded to Avenue

1. Suppose that A and B are two groups. In class we discussed the abstract notion of the product of two groups. That is, D together with two group homomorphisms $\rho_{A}: D \rightarrow A$ and $\rho_{B}: D \rightarrow B$ is a product of A and B if whenever C is a group and f and g are group homomorphisms are as pictured:

then there is a unique group homomorphism $h: C \rightarrow D$ such that $\rho_{A} \circ$ $h=f$ and $\rho_{B} \circ h=g$. Show that if $D^{\prime}, \rho_{A}^{\prime}$ and ρ_{B}^{\prime} is also a product of A and B then there is a unique isomorphism $i: D \rightarrow D^{\prime}$ such that $\rho_{A}=\rho_{A}^{\prime} \circ i$ and $\rho_{B}=\rho_{B}^{\prime} \circ i$.
Solution: D, ρ_{A} and ρ_{B} is a product of A and B so in the definition, choose C to be D^{\prime} together with the maps ρ_{A}^{\prime} and ρ_{B}^{\prime}. From the definition, we are given a map $h: D^{\prime} \rightarrow D$ such that

$$
\rho_{A} \circ h=\rho_{A}^{\prime} \text { and } \rho_{B} \circ h=\rho_{B}^{\prime} .
$$

LIkewise, if we apply the definition of product to D^{\prime} and substitute D for C in the definition, we obtain a map $h^{\prime}: D \rightarrow D^{\prime}$ such that

$$
\rho_{A}^{\prime} \circ h^{\prime}=\rho_{A} \text { and } \rho_{B}^{\prime} \circ h=\rho_{B} .
$$

Now consider $h \circ h^{\prime}$. We have

$$
\rho_{A} \circ\left(h \circ h^{\prime}\right)=\left(\rho_{A} \circ h\right) \circ h^{\prime}=\rho_{A}^{\prime} \circ h^{\prime}=\rho_{A}
$$

and

$$
\rho_{B} \circ\left(h \circ h^{\prime}\right)=\left(\rho_{B} \circ h\right) \circ h^{\prime}=\rho_{B}^{\prime} \circ h^{\prime}=\rho_{B} .
$$

But if D itself is substituted into the definition of product for C, the unique map must be the identity on D. But we just showed that $h \circ h^{\prime}$ also works and so we conclude that $h \circ h^{\prime}=i d_{D}$. Similarly, we get that $\rho_{A}^{\prime} \circ\left(h^{\prime} \circ h\right)=\rho_{A}^{\prime}$ and $\rho_{B}^{\prime} \circ\left(h^{\prime} \circ h\right)=\rho_{B}^{\prime}$ and conclude that $h^{\prime} \circ h=i d_{D^{\prime}}$. So h is an isomorphism and is the unique isomorphism we were looking for by the definition of product.
2. Show that if we have groups G_{i} for $i \leq n$ and normal subgroups N_{i} of G_{i} for $i \leq n$ then

$$
G_{1} / N_{1} \times G_{2} / N_{2} \times \ldots G_{n} / N_{n} \cong\left(G_{1} \times \ldots \times G_{n}\right) /\left(N_{1} \times \ldots \times N_{n}\right)
$$

Solution: We use the first isomorphism theorem. Suppose that $\left(g_{1}, \ldots, g_{n}\right) \in$ $G_{1} \times \ldots \times G_{n}$ and consider the homomorphism $\varphi: G_{1} \times \ldots \times G_{n} \rightarrow$ $G_{1} / N_{1} \times G_{2} / N_{2} \times \ldots G_{n} / N_{n}$ given by

$$
\varphi\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1} N_{1}, \ldots, g_{n} N_{n}\right) .
$$

φ is clearly onto $G_{1} / N_{1} \times G_{2} / N_{2} \times \ldots G_{n} / N_{n}$ and the kernel of φ is $N_{1} \times \ldots \times N_{n}$ so we conclude that

$$
\left(G_{1} \times \ldots \times G_{n}\right) /\left(N_{1} \times \ldots \times N_{n}\right) \cong G_{1} / N_{1} \times G_{2} / N_{2} \times \ldots G_{n} / N_{n}
$$

3. Prove that there is only one free abelian group up to isomorphism on n generators. That is, if F is a free abelian group on generators x_{1}, \ldots, x_{n} and G is a free abelian group on generators y_{1}, \ldots, y_{n} then there is a unique isomorphism $f: F \rightarrow G$ such that $f\left(x_{i}\right)=y_{i}$ for $i \leq n$.
Solution: Consider the map which sends x_{i} to y_{i} for all $i \leq n$. By the definition of being free abelian, there is a homomorphism f from F to G such that $f\left(x_{i}\right)=y_{i}$ for all $i \leq n$. Similarly, since G is free abelian on the generators y_{i} for $i \leq n$, there is a homomorphism g from G to F such that $g\left(y_{i}\right)=x_{i}$ for all $i \leq n$. If one considers $g \circ f$, we see that this map goes from F to F and fixes all the generators x_{i}. So $g \circ f=i d_{F}$. Similarly, $f \circ g=i d_{G}$. This shows that f is an isomorphism as required.
4. Show that if A and B are abelian groups, $\varphi_{i}: A \rightarrow B$ are group homomorphisms for $i \leq n$ and $m_{1}, \ldots, m_{n} \in Z$ then

$$
m_{1} \varphi_{1}+\ldots+m_{n} \varphi_{n}
$$

is a group homomorphism from A to B.
Solution: As someone said in class, this is plug and chug. Suppose that $x, y \in A$ then

$$
\left(m_{1} \varphi_{1}+\ldots+m_{n} \varphi_{n}\right)(x-y)=m_{1} \varphi_{1}(x-y)+\ldots+m_{n} \varphi_{n}(x-y)
$$

and this all equals

$$
m_{1} \varphi_{1}(x)+\ldots+m_{n} \varphi_{n}(x)-m_{1} \varphi_{1}(y)-\ldots-m_{n} \varphi_{n}(y)
$$

which is what we want to show.

