Assignment 4, Math 3EE3
Due Mar. 12 in class
(1) Suppose that p is prime and $\sigma: Z[x] \rightarrow Z_{p}[x]$ is defined by computing the coefficients from a polynomial in $Z[x] \bmod p$.
(a) Prove that σ is a homomorphism.
(b) Show that if $f \in Z[x]$ and $\sigma(f)$ have the same degree then if $\sigma(f)$ is irreducible over Z_{p} then f is irreducible over Z.
(c) Use this to show that $x^{3}+17 x+36$ is irreducible over Z.
(2) In class we showed that any field F can be extended to one in which all polynomials over F have a solution. Here is another proof of that fact: Let P be the set of non-constant polynomials over a field F and let X be the set of finite subsets of P. For each $\Delta \in X$ we can find an extension of F, F_{Δ} such that every polynomial in Δ has a solution in F_{Δ}. Let $R=\prod_{\Delta \in X} F_{\Delta}$ and let I be
$\left\{\bar{a} \in R\right.$: for some $\Delta \in X$, if $\Delta \subseteq \Sigma \in X$ then $\left.a_{\Sigma}=0\right\}$
Here we are considering $\bar{a} \in R$ as the sequence $\left\langle a_{\Sigma}: \Sigma \in X\right\rangle$.
(a) Show that I is a proper ideal. Choose a maximal ideal J with $I \subseteq J$ and let $K=R / J ; K$ is a field.
(b) Let $\Phi: F \rightarrow K$ be defined by $\Phi(a)=\langle a: \Delta \in X\rangle / J$ i.e. the constant sequence a modulo J. Show that Φ is an embedding. Hence we can associate F with the image of Φ.
(c) Show that K satisfies all polynomials over F.
(3) Suppose that F is a field, $S \subseteq F^{n}$ and I is an ideal in $F\left[x_{1}, \ldots, x_{n}\right]=$ $F[\bar{x}]$. Define

$$
I(S)=\{f \in F[\bar{x}]: f(\bar{s})=0 \text { for all } \bar{s} \in S\}
$$

and

$$
V(I)=\left\{\bar{s} \in F^{n}: f(\bar{s})=0 \text { for all } f \in I\right\}
$$

(a) Prove that $I(S)$ is an ideal.
(b) Prove that $S \subseteq V(I(S))$.
(c) Give an example of a subset S of R^{2} for which $S \neq V(I(S))$.

