
Assignment 3, Math 3EE3
Due Feb. 26 in class

(1) Prove the division algorithm for polynomials over an arbitrary field. That is, show
that if F is a field and f, g ∈ F [x] then there are unique q, r ∈ F [x] such that
g = qf + r and deg(r) < deg(f). Hint: prove this by induction on the degree of g.

(2) Prove that if S is a finite subgroup of the multiplicative group of a field K then S is
cyclic. Hint: S is a finite abelian group and so by the fundamental theorem of finite
abelian groups we can write S as the product of finitely many cyclic subgroups of
prime power order i.e.

S ∼= Zd1 × . . .× Zdn

where di is a power of a prime for all i. Let m be the least common multiple of the
di’s. Claim: am = 1 for all a ∈ S. Ask yourself how many solutions the polynomial
xm − 1 can have in K.

(3) In order to understand the role of the quarternions, we give the following proof; you
should provide proofs for the statements in bold.

Theorem (Frobenius). Show that if D is a finite-dimensional real division algebra then D
is isomorphic to R,C or H; that is If D is a division ring and R is contained in the centre
of D i.e. if R ⊆ D and for every a ∈ D and r ∈ R, ar = ra, and as an R-vector space D
is finite-dimensional then D is isomorphic to either the reals, the complex numbers or the
quaternions.

Proof. Suppose D is as in the theorem and is n-dimensional as a real vector space. Consider
the map ϕ from D to linear transformations on D defined by: for every a ∈ D, ϕa : D → D
such that ϕa(b) = ab.
Check that for every a ∈ D, ϕa is a linear transformation.
By fixing a basis for D, we can identify the set of linear transformations on D with Mn(R).

In this way we can assume that D ⊆Mn(R) where R is identified with scalar multiples of I.
Now consider the trace map tr : D → R sending a ∈ D to tr(a), the trace of the matrix

a. The trace is a linear transformation; let V be the kernel of tr. Since R is one-dimensional
as an R vector space, V is of co-dimension 1 in D and R together with V generates D.

Now fix a ∈ D and let p(x) be the characteristic polynomial of a. Over the reals, all
polynomials factor into a product of linear and irreducible quadratic terms so

p(x) =
k∏

i=1

(x− ri)
l∏

j=1

qj(x)

where ri ∈ R and qj is an irreducible quadratic. By the Cayley-Hamilton Theorem, a satisfies
its characteristic polynomial so p(a) = 0. Since D is a division ring, this means that either
a = rI for some r ∈ R or q(a) = 0 for some irreducible quadratic q. (Why?)

Now if a ∈ V then tr(a) = 0 so either a = 0 or the minimal polynomial for a is of the form
q(x) = x2 + bx + c where b2 < 4c i.e. q is irreducible over R. The characteristic polynomial
for a is then some power of q, say qt(x). Remembering that the trace of a is the coefficient of
x2t−1 in the characteristic polynomial conclude that if tr(a) = 0 then b = 0. Therefore,
if a ∈ V and a 6= 0 then a satisfies x2 + c for some c > 0. So if a ∈ V then a2 ∈ R i.e. a2 is
a multiple of I and that multiple is ≤ 0. We say a2 ≤ 0.
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Now define an inner product on V by

〈x, y〉 =
x2 + y2 − (x + y)2

2
Check that this is an inner product. Make sure you show that 〈x, y〉 is a real number.

Now suppose that e1, . . . , em is an orthonormal basis for V with respect to this inner
product.

Show that

(1) e2i = −1 for all i,
(2) eiej = −ejei for i 6= j, and
(3) if m ≥ 3 then (e1e2 − e3)(e1e2 + e3) = 0. Why does this show e3 = ±e1e2?

In fact, the calculation above show that ek = ±e1e2 for any k > 2 i.e. e3 = ±ek for all
k ≥ 3. So m is at most 3. If m = 0 then D = R. If m = 1 then e21 = −1 and we see that
D ∼= C. If m > 1 then in fact m = 3 since always e1, e2 and e1e2 are linearly independent.
We have e21 = e22 = −1 and e1e2 = −e2e1 which are the defining equations for the quaternions
so D ∼= H. �


