Assignment 3, Math 3EE3
Due Feb. 26 in class
(1) Prove the division algorithm for polynomials over an arbitrary field. That is, show that if F is a field and $f, g \in F[x]$ then there are unique $q, r \in F[x]$ such that $g=q f+r$ and $\operatorname{deg}(r)<\operatorname{deg}(f)$. Hint: prove this by induction on the degree of g.
(2) Prove that if S is a finite subgroup of the multiplicative group of a field K then S is cyclic. Hint: S is a finite abelian group and so by the fundamental theorem of finite abelian groups we can write S as the product of finitely many cyclic subgroups of prime power order i.e.

$$
S \cong Z_{d_{1}} \times \ldots \times Z_{d_{n}}
$$

where d_{i} is a power of a prime for all i. Let m be the least common multiple of the d_{i} 's. Claim: $a^{m}=1$ for all $a \in S$. Ask yourself how many solutions the polynomial $x^{m}-1$ can have in K.
(3) In order to understand the role of the quarternions, we give the following proof; you should provide proofs for the statements in bold.

Theorem (Frobenius). Show that if D is a finite-dimensional real division algebra then D is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H}; that is If D is a division ring and \mathbb{R} is contained in the centre of D i.e. if $\mathbb{R} \subseteq D$ and for every $a \in D$ and $r \in \mathbb{R}$, ar $=r a$, and as an \mathbb{R}-vector space D is finite-dimensional then D is isomorphic to either the reals, the complex numbers or the quaternions.

Proof. Suppose D is as in the theorem and is n-dimensional as a real vector space. Consider the map φ from D to linear transformations on D defined by: for every $a \in D, \varphi_{a}: D \rightarrow D$ such that $\varphi_{a}(b)=a b$.

Check that for every $a \in D, \varphi_{a}$ is a linear transformation.
By fixing a basis for D, we can identify the set of linear transformations on D with $M_{n}(\mathbb{R})$. In this way we can assume that $D \subseteq M_{n}(\mathbb{R})$ where \mathbb{R} is identified with scalar multiples of I.

Now consider the trace map $\operatorname{tr}: D \rightarrow \mathbb{R}$ sending $a \in D$ to $\operatorname{tr}(a)$, the trace of the matrix a. The trace is a linear transformation; let V be the kernel of tr. Since \mathbb{R} is one-dimensional as an \mathbb{R} vector space, V is of co-dimension 1 in D and \mathbb{R} together with V generates D.

Now fix $a \in D$ and let $p(x)$ be the characteristic polynomial of a. Over the reals, all polynomials factor into a product of linear and irreducible quadratic terms so

$$
p(x)=\prod_{i=1}^{k}\left(x-r_{i}\right) \prod_{j=1}^{l} q_{j}(x)
$$

where $r_{i} \in \mathbb{R}$ and q_{j} is an irreducible quadratic. By the Cayley-Hamilton Theorem, a satisfies its characteristic polynomial so $p(a)=0$. Since D is a division ring, this means that either $a=r I$ for some $r \in \mathbb{R}$ or $q(a)=0$ for some irreducible quadratic q. (Why?)

Now if $a \in V$ then $\operatorname{tr}(a)=0$ so either $a=0$ or the minimal polynomial for a is of the form $q(x)=x^{2}+b x+c$ where $b^{2}<4 c$ i.e. q is irreducible over \mathbb{R}. The characteristic polynomial for a is then some power of q, say $q^{t}(x)$. Remembering that the trace of a is the coefficient of $x^{2 t-1}$ in the characteristic polynomial conclude that if $\operatorname{tr}(a)=0$ then $b=0$. Therefore, if $a \in V$ and $a \neq 0$ then a satisfies $x^{2}+c$ for some $c>0$. So if $a \in V$ then $a^{2} \in \mathbb{R}$ i.e. a^{2} is a multiple of I and that multiple is ≤ 0. We say $a^{2} \leq 0$.

Now define an inner product on V by

$$
\langle x, y\rangle=\frac{x^{2}+y^{2}-(x+y)^{2}}{2}
$$

Check that this is an inner product. Make sure you show that $\langle x, y\rangle$ is a real number.
Now suppose that e_{1}, \ldots, e_{m} is an orthonormal basis for V with respect to this inner product.

Show that
(1) $e_{i}^{2}=-1$ for all i,
(2) $e_{i} e_{j}=-e_{j} e_{i}$ for $i \neq j$, and
(3) if $m \geq 3$ then $\left(e_{1} e_{2}-e_{3}\right)\left(e_{1} e_{2}+e_{3}\right)=0$. Why does this show $e_{3}= \pm e_{1} e_{2}$?

In fact, the calculation above show that $e_{k}= \pm e_{1} e_{2}$ for any $k>2$ i.e. $e_{3}= \pm e_{k}$ for all $k \geq 3$. So m is at most 3 . If $m=0$ then $D=\mathbb{R}$. If $m=1$ then $e_{1}^{2}=-1$ and we see that $D \cong \mathbb{C}$. If $m>1$ then in fact $m=3$ since always e_{1}, e_{2} and $e_{1} e_{2}$ are linearly independent. We have $e_{1}^{2}=e_{2}^{2}=-1$ and $e_{1} e_{2}=-e_{2} e_{1}$ which are the defining equations for the quaternions so $D \cong \mathbb{H}$.

