Assignment 1, Math 3EE3
Due Jan. 20 in class
(1) Suppose R is a ring. We say that $p \in R$ is a projection if $p^{2}=p$. Show that if p is a projection then $p R p=\{p a p: a \in R\}$ is a subring of R for which p is a multiplicative identity. Moreover, show that if S is a subring of R and S has a multiplicative identity p then p is a projection and $S \subseteq p R p$.
(2) Suppose that R is a ring with + and \cdot. Fix any set X and let R^{X} be the set of all functions from X to R. Define + and \cdot on R^{X} as follows: for $f, g \in R^{X}, f+g$ and $f g$ are the functions satisfying for all $x \in X$

$$
(f+g)(x)=f(x)+g(x) \text { and }(f g)(x)=f(x) g(x)
$$

Show that R^{X} is a ring.
(3) Let's give two proofs that if R is a ring and $X \subseteq R$ then there is a minimal subring of R which contains X.
(a) Consider the set $\{S \subseteq R: X \subseteq S$ and S is a subring $\}$. Consider the intersection of all these subrings is also a subring of R and it is the smallest subring containing X.
(b) Suppose $x_{1}, \ldots, x_{n} \in X$; call $x_{1} x_{2} \ldots x_{n}$, the product of these elements, a word from X. Let S be the set of all finite sums and differences of words from X. That is, if w_{1}, \ldots, w_{n} and u_{1}, \ldots, u_{m} are words from X then

$$
\left(w_{1}+\ldots+w_{n}\right)-\left(u_{1}+\ldots+u_{m}\right)
$$

is in S. Show that S is the smallest subring in R containing X; use the convention that the empty sum is 0 .
(4) Show that if R is a ring then $M_{n}(R)$ is also a ring where addition is defined by $\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right)$ and multiplication is given by $\left(a_{i j}\right)\left(b_{i j}\right)=\left(c_{i j}\right.$ where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. In order to show that multiplication is associative, consider $A \in M_{n}(R)$ to be a function from R^{n} to R^{n} by the usual multiplication of matrices and vectors. Then argue that matrix multiplication is just composition of functions.
(5) Consider the following 3 complex 2×2 matrices

$$
i=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \text { and } k=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Let H be defined as the subset of 2×2 matrices of the form $a I+b i+c j+d k$ where a, b, c and d are real numbers. Prove that H is a division ring as a subring of $M_{2}(C)$ and is noncommutative. This ring is called the quaternions.

