Extra questions for assignment 4

- 1. Suppose that $q = p^n$ and p_1, \ldots, p_r are the distinct prime factors of q 1. Show that g is a multiplicative generator of F_q if and only if $g^{\frac{q-1}{p_i}} \neq 1$ in F_q for all $i = 1, \ldots, r$.
- 2. Use the previous question to determine which of the numbers 2, 3, 5, 7 are generators of F_{41} .
- 3. Assume that g is a generator of F_q . Show that g^i is a generator if and only if *i* and q 1 are relatively prime.
- 4. In F_{101} , $L_2(3) = 69$ and $L_2(5) = 24$. Compute $L_2(60)$.