Extended Euclidean Algorithm

Here is Euclid's algorithm again:

•
$$b = q_1 a + r_1, 0 < r_1 < a$$

• $a = q_2 r_1 + r_2, 0 < r_2 < r_1$
• $r_1 = q_3 r_2 + r_3, 0 < r_3 < r_2$

•
$$r_{k-2} = q_k r_{k-1} + r_k, 0 < r_k < r_{k-1}$$

•
$$r_{k-1} = q_{k+1}r_k$$

• Define two sequences x_i and y_i as follows:

$$x_{-1} = 0, x_0 = 1, y_{-1} = 1, y_0 = 0$$

$$x_j = x_{j-2} - q_j x_{j-1}$$
 and $y_j = y_{j-2} - q_j y_{j-1}$.

- Claim: $r_j = x_j a + y_j b$ for all j. In particular, $gcd(a, b) = r_k = x_k a + y_k b$.
- Summary: We can calculate gcd's efficiently and if gcd(a, b) = d we can effectively find x and y such that d = xa + yb.

a = 114, b = 281

	j	-1	0	1	2	3	4	5	6
۲	Х	0	1	-2	5	-32	37	-69	106
	у	1	0	1	-2	13	-15	28	-43

• $53 = (-2) \times 114 + 281, 8 = 5 \times 114 - 2 \times 281, \dots,$ 1 = 106 × 114 + (-43) × 281

- $a \equiv b \mod n$ if *n* divides a b.
- For each *n*, this is an equivalence relation on the integers.
- As with 26, addition and multiplication is well-defined for integers mod *n*.
- As before, we get a ring (all the usual rules of arithmetic work) on the integers mod *n*.
- The set of equivalence classes is written *Z*/*nZ* and when one talks about arithmetic operations, one is talking about addition and multiplication of classes.

Lemma

 $ax \equiv b \mod n$ has a solution iff gcd(a, n) divides b. The solution is unique modulo n if the gcd is 1.

Corollary

If gcd(a, n) = 1 then a has a multiplicative inverse mod n.

Theorem (Chinese remainder theorem)

Suppose that gcd(m, n) = 1. Then for any $a, b \in Z$ there is a unique x mod mn such that $x \equiv a \mod m$ and $x \equiv b \mod n$.

In fact, if $m_i \in Z$ for i = 1, ..., n and $gcd(m_i, m_j) = 1$ for $i \neq j$ then for any $a_i \in Z$ for i = 1, ..., n there is a unique x mod $m_1m_2...m_n$ such that $x \equiv a_i \mod m_i$ for all *i*.

Theorem (Fermat's little theorem)

Suppose that p is prime and p does not divide a. Then

 $a^{p-1} \equiv 1 \mod p$.

 Define the Euler φ-function on the set of positive integers by

 $\phi(n) =$ the number of k, 0 < k < n such that gcd(k, n) = 1.

Theorem (Euler's theorem)

Suppose n > 0 and gcd(a, n) = 1. Then

$$a^{\phi(n)} \equiv 1 \mod n.$$