Extended Euclidean Algorithm

- Here is Euclid's algorithm again:
- $b=q_{1} a+r_{1}, 0<r_{1}<a$
- $a=q_{2} r_{1}+r_{2}, 0<r_{2}<r_{1}$
- $r_{1}=q_{3} r_{2}+r_{3}, 0<r_{3}<r_{2}$
-
- $r_{k-2}=q_{k} r_{k-1}+r_{k}, 0<r_{k}<r_{k-1}$
- $r_{k-1}=q_{k+1} r_{k}$
- Define two sequences x_{j} and y_{j} as follows:

$$
\begin{aligned}
x_{-1}=0, x_{0} & =1, y_{-1}=1, y_{0}=0 \\
x_{j} & =x_{j-2}-q_{j} x_{j-1} \text { and } y_{j}=y_{j-2}-q_{j} y_{j-1} .
\end{aligned}
$$

- Claim: $r_{j}=x_{j} a+y_{j} b$ for all j. In particular, $\operatorname{gcd}(a, b)=r_{k}=x_{k} a+y_{k} b$.
- Summary: We can calculate gcd's efficiently and if $\operatorname{gcd}(a, b)=d$ we can effectively find x and y such that $d=x a+y b$.

Example

- $a=114, b=281$
- | j | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | 0 | 1 | -2 | 5 | -32 | 37 | -69 | 106 |
| y | 1 | 0 | 1 | -2 | 13 | -15 | 28 | -43 |
- $53=(-2) \times 114+281,8=5 \times 114-2 \times 281, \ldots$, $1=106 \times 114+(-43) \times 281$

Back to modular arithmetic

- $a \equiv b \bmod n$ if n divides $a-b$.
- For each n, this is an equivalence relation on the integers.
- As with 26, addition and multiplication is well-defined for integers mod n.
- As before, we get a ring (all the usual rules of arithmetic work) on the integers mod n.
- The set of equivalence classes is written $Z / n Z$ and when one talks about arithmetic operations, one is talking about addition and multiplication of classes.

Solving equations $\bmod n$

Lemma

$a x \equiv b \bmod n$ has a solution iff $\operatorname{gcd}(a, n)$ divides b. The solution is unique modulo n if the gcd is 1 .

Corollary
If $\operatorname{gcd}(a, n)=1$ then a has a multiplicative inverse $\bmod n$.

Theorem (Chinese remainder theorem)

Suppose that $\operatorname{gcd}(m, n)=1$. Then for any $a, b \in Z$ there is a unique $x \bmod m n$ such that $x \equiv a \bmod m$ and $x \equiv b \bmod n$.

In fact, if $m_{i} \in Z$ for $i=1, \ldots, n$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$ then for any $a_{i} \in Z$ for $i=1, \ldots, n$ there is a unique x mod $m_{1} m_{2} \ldots m_{n}$ such that $x \equiv a_{i} \bmod m_{i}$ for all i.

Fermat's little theorem

Theorem (Fermat's little theorem)

Suppose that p is prime and p does not divide a. Then

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

- Define the Euler ϕ-function on the set of positive integers by $\phi(n)=$ the number of $k, 0<k<n$ such that $\operatorname{gcd}(k, n)=1$.

Theorem (Euler's theorem)

Suppose $n>0$ and $\operatorname{gcd}(a, n)=1$. Then

$$
a^{\phi(n)} \equiv 1 \quad \bmod n .
$$

