GCD again

- The greatest common divisor gcd of two positive integers a and b is the largest number d such that $d \mid a$ and $d \mid b(d$ divides a and $b)$. We write $d=\operatorname{gcd}(a, b)$.
- How do we find $\operatorname{gcd}(a, b)$ for $a<b$? Euclid's algorithm:
- $b=q_{1} a+r_{1}, 0<r_{1}<a$
- $a=q_{2} r_{1}+r_{2}, 0<r_{2}<r_{1}$
-
- $r_{k-2}=q_{k-2} r_{k-1}+r_{k}, 0<r_{k}<r_{k-1}$
- $r_{k-1}=q_{k-1} r_{k}$
- Claim: $\operatorname{gcd}(a, b)=r_{k}$.
- Consider $I=\{x a+y b: x, y \in Z\}$. Claim: If d is the least positive integer in $/$ then $d=\operatorname{gcd}(a, b)$.
- Corollary: There is an x and y such that $\operatorname{gcd}(a, b)=x a+y b$.

Extended Euclidean Algorithm

- Here is Euclid's algorithm again:
- $b=q_{1} a+r_{1}, 0<r_{1}<a$
- $a=q_{2} r_{1}+r_{2}, 0<r_{2}<r_{1}$
- $r_{1}=q_{3} r_{2}+r_{3}, 0<r_{3}<r_{2}$
-
- $r_{k-2}=q_{k} r_{k-1}+r_{k}, 0<r_{k}<r_{k-1}$
- $r_{k-1}=q_{k+1} r_{k}$
- Define two sequences x_{j} and y_{j} as follows:

$$
\begin{aligned}
x_{-1}=0, x_{0} & =1, y_{-1}=1, y_{0}=0 \\
x_{j} & =x_{j-2}-q_{j} x_{j-1} \text { and } y_{j}=y_{j-2}-q_{j} y_{j-1} .
\end{aligned}
$$

- Claim: $r_{j}=x_{j} a+y_{j} b$ for all j. In particular, $\operatorname{gcd}(a, b)=r_{k}=x_{k} a+y_{k} b$.
- Summary: We can calculate gcd's efficiently and if $\operatorname{gcd}(a, b)=d$ we can effectively find x and y such that $d=x a+y b$.

Back to modular arithmetic

- $a \equiv b \bmod n$ if n divides $a-b$.
- For each n, this is an equivalence relation on the integers.
- As with 26, addition and multiplication is well-defined for integers mod n.
- As before, we get a ring (all the usual rules of arithmetic work) on the integers mod n.
- The set of equivalence classes is written $Z / n Z$ and when one talks about arithmetic operations, one is talking about addition and multiplication of classes.

