RSA

@ Rivest, Shamir and Adelson encryption was the first (1977)
publicly known asymmetric encryption algorithm.

@ It solved the problem posed by Alice and Bob being unable
to meet or securely transfer encryption/decryption keys.

@ |t also solved the problem of allowing someone to
anonymously send an encrypted message to you (Bob).

@ This sounds contradictory although it was proposed by
Diffie and Hellman and was actually known to British
intelligence before RSA was discovered.
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The RSA algorithm

@ Bob chooses two primes p and g and a number e (for
exponent) such that ged(e,(p—1)(g—1)) = 1.

@ Bob creates n = pg and makes n and e public. He
definitely does not make p and g public.

@ Now Alice (or anyone who wants to anonymously
communicate with Bob) takes their message m encoded
as a number less than n and computes m® mod n and
transmits the outcome to Bob. If their message is long they
encode chunks of it as numbers less than n.

@ Bob knows a number d (the decrypter) such that ed = 1
mod (p — 1)(g — 1) and so he computes (m®)? mod n and
recovers the message m.
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Why is RSA so good?

@ Because factoring is apparently hard.

@ If you are given a number n then it can be written in binary
with approximately b = log,(n) many bits.

@ The naive factoring algorithm tries all numbers up to v/n
which is a number with about b/2 many bits.

@ There are about 2°/2 many numbers with b/2 many bits
and so the naive algorithm takes exponentially long in the
length of the number in order to factor it.

@ There are better algorithms but they still do not factor
quickly.

@ The best RSA challenge that has been passed was the
factorization of a 768 bit number. The hardest unsolved
RSA challenge is 2048 bits long.
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RSA-2048

RSA-2048

251959084756578934940271832400483985714292821262040
320277771378360436620207075955562640185258807844069
182906412495150821892985591491761845028084891200728
449926873928072877767359714183472702618963750149718
246911650776133798590957000973304597488084284017974
291006424586918171951187461215151726546322822168699
875491824224336372590851418654620435767984233871847
744479207399342365848238242811981638150106748104516
603773060562016196762561338441436038339044149526344
321901146575444541784240209246165157233507787077498
171257724679629263863563732899121548314381678998850
404453640235273819513786365643912120103971228221207
20357
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All you need to know about primes

@ RSA needs lots of primes to stay ahead of technology.

@ Recall that Euclid proved to us that there are infinitely
many primes.

@ In fact we know that primes are not that rare. Let 7(N) be
the number of primes < N. The following theorem was
proved by Hadamard and de la Valleé in the 19" century.

Theorem (Prime Number Theorem)

That is,
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Back to modular arithmetic

@ a=b mod nif ndivides a — b.
@ For each n, this is an equivalence relation on the integers.

@ As with 26, addition and multiplication is well-defined for
integers mod n.

@ As before, we get a ring (all the usual rules of arithmetic
work) on the integers mod n.

@ The set of equivalence classes is written Z/nZ and when
one talks about arithmetic operations, one is talking about
addition and multiplication of classes.
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