- Rivest, Shamir and Adelson encryption was the first (1977) publicly known asymmetric encryption algorithm.
- It solved the problem posed by Alice and Bob being unable to meet or securely transfer encryption/decryption keys.
- It also solved the problem of allowing someone to anonymously send an encrypted message to you (Bob).
- This sounds contradictory although it was proposed by Diffie and Hellman and was actually known to British intelligence before RSA was discovered.

The RSA algorithm

- Bob chooses two primes p and q and a number e (for exponent) such that $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Bob creates $n=p q$ and makes n and e public. He definitely does not make p and q public.
- Now Alice (or anyone who wants to anonymously communicate with Bob) takes their message m encoded as a number less than n and computes $m^{e} \bmod n$ and transmits the outcome to Bob. If their message is long they encode chunks of it as numbers less than n.
- Bob knows a number d (the decrypter) such that ed $\equiv 1$ $\bmod (p-1)(q-1)$ and so he computes $\left(m^{e}\right)^{d} \bmod n$ and recovers the message m.

Why is RSA so good?

- Because factoring is apparently hard.
- If you are given a number n then it can be written in binary with approximately $b=\log _{2}(n)$ many bits.
- The naive factoring algorithm tries all numbers up to \sqrt{n} which is a number with about $b / 2$ many bits.
- There are about $2^{b / 2}$ many numbers with $b / 2$ many bits and so the naive algorithm takes exponentially long in the length of the number in order to factor it.
- There are better algorithms but they still do not factor quickly.
- The best RSA challenge that has been passed was the factorization of a 768 bit number. The hardest unsolved RSA challenge is 2048 bits long.

RSA-2048

RSA-2048

251959084756578934940271832400483985714292821262040 320277771378360436620207075955562640185258807844069 182906412495150821892985591491761845028084891200728 449926873928072877767359714183472702618963750149718 246911650776133798590957000973304597488084284017974 291006424586918171951187461215151726546322822168699 875491824224336372590851418654620435767984233871847 744479207399342365848238242811981638150106748104516 603773060562016196762561338441436038339044149526344 321901146575444541784240209246165157233507787077498 171257724679629263863563732899121548314381678998850 404453640235273819513786365643912120103971228221207 20357

All you need to know about primes

- RSA needs lots of primes to stay ahead of technology.
- Recall that Euclid proved to us that there are infinitely many primes.
- In fact we know that primes are not that rare. Let $\pi(N)$ be the number of primes $\leq N$. The following theorem was proved by Hadamard and de la Valleé in the $19^{\text {th }}$ century.

Theorem (Prime Number Theorem)

$$
\pi(N) \sim \frac{N}{\ln (N)}
$$

That is,

$$
\lim _{N \rightarrow \infty} \frac{\pi(N) \ln (N)}{N}=1
$$

Back to modular arithmetic

- $a \equiv b \bmod n$ if n divides $a-b$.
- For each n, this is an equivalence relation on the integers.
- As with 26, addition and multiplication is well-defined for integers mod n.
- As before, we get a ring (all the usual rules of arithmetic work) on the integers mod n.
- The set of equivalence classes is written $Z / n Z$ and when one talks about arithmetic operations, one is talking about addition and multiplication of classes.

