Arithmetic mod 26

- Addition and multiplication are well-defined mod 26; what does this mean?
- Write $a \equiv b$ mod 26 if 26 divides $a-b$; equivalently a and b have the same remainder when divided by 26.
- If $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod 26$ then $a+b \equiv a^{\prime}+b^{\prime} \bmod 26$ and $a b \equiv a^{\prime} b^{\prime}$ mod 26 ; why?
- Once we know that addition and multiplication is well-defined then we know that they are commutative, associative operations on the integers mod 26, 0 acts as the additive identity, 1 acts as the multiplicative identity and they satisfy the distributive law:

$$
a(b+c) \equiv a b+a c \bmod 26
$$

- That is, the integers modulo 26 are a ring.

Invertible elements mod 26

- But it is not a field: not every non-zero element has a multiplicative inverse.
- If $\operatorname{gcd}(a, 26) \neq 1$ then a does not have a multiplicative inverse.
- Inverses, if they exist, are unique.
- Claim: if $\operatorname{gcd}(a, 26)=1$ then there is a b such that $a b \equiv 1$ mod 26.
- In fact, $\operatorname{gcd}(a, 26)=1$ iff there are k, ℓ such that $k a+26 \ell=1$.
- Aside: If a does have a multiplicative inverse then it equals a^{r} for some r.
- Next up: linear algebra mod 26!

Block ciphers

- Character replacement ciphers are subject to character frequency analysis.
- Block ciphers replace blocks of n characters with other blocks of n characters.
- Even for $n=5$, since $26^{5} \approx 12 \times 10^{6}$, you would be hard pressed to get a frequency analysis to work.
- The goal with a block cipher (as with any cipher) is to have some easy method of encrypting, in this case blocks of characters, which is somehow difficult to decrypt.
- Enter Hill and the idea of using matrix multiply mod 26.

Hill cipher

- Fix a matrix A which is $n \times n$ and contains entries mod 26 .
- If you are given a vector u, an n-tuple, with entries mod 26 , then you compute $u A$ and this is the encryption of u. Everything is understood mod 26.
- For example, if $u=(2,0,19)$ (CAT) and A is the matrix

$$
\left(\begin{array}{lll}
5 & 1 & 3 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right)
$$

then $u A=(3,14,6)(\mathrm{DOG})$.

- Remember that the encryption method has to be one-to-one. In this case, this means that that we should have $u A=v A$ for different u and v. Or said another way, we shouldn't have $(u-v) A=0$ if $u-v \neq 0$.
- That is, you want A to be invertible. What does that mean here when we are working mod 26 ?
- A is invertible if there is some matrix B such that $A B=I$ mod 26.
- Fact: TFAE
(1) A is invertible.
(2) The only solution to $u A=0$ is $u=0$.
(3) $\operatorname{det}(A)$ is invertible $\bmod 26$.

Attacks on the Hill cipher

- Three types of attacks are going to work:
- If you have temporary access to the encryption machine.
- If you have temporary access to the decryption machine.
- If you have a sufficiently long cleartext/ciphertext pair.
- The goal in all cases is to figure out what A is.
- If you have access to either machine, feed it the standard basis.
- What to do in the third case is best seen on the blackboard.

