Vigenère's cipher, section 2.3

- Code the alphabet using 0 25: A 0, B 1, C 2, ...
- We work with arithmetic modulo 26.
- This cipher encrypts strings of letters we skip blanks. E.g.
 D O G
 3 14 6
- The cipher uses a code length k and a vector of length k of numbers mod 26.
- For example, if k = 3 and v = (4,7,12) we encrypt DOG as follows:

$$(3, 14, 6) + (4, 7, 12) = (7, 21, 18)$$

and that is the string HWT.

- For longer strings we just code the first *k* letters as above and then start again with the next *k* letters until we finish the string.
- The sense of security comes from not knowing *k* as well as not knowing *v*.
- As we will see, this cipher is susceptible to a letter frequency attack.

Letter frequency in texts	, Beker-Piper, '82

а	b	С	d	е	f	g	h	i
.082	.015	.028	.043	.127	.022	.020	.061	.070
j	k	I	m	n	0	р	q	r
.002	.008	.040	.024	.067	.075	.019	.001	.060
S	t	u	v	W	х	У	Z	
.063	.091	.028	.010	.023	.001	.020	.001	

- How do we break this cipher? The issue is finding the key length.
- You need to have a reasonably long chunk of ciphertext (long relative to the potential key length).
- Compare the ciphertext to a copy of the ciphertext displaced by l places and count the number of spots with the same character.
- The number l with the greatest number of matches is likely to be the key length. Why?

Proof that this works

- Suppose V = (p₀, p₁, ..., p₂₅) is a vector of the letter frequencies from the earlier slide.
- Consider the mth spot in the ciphertext which has been shifted by *i* by the cipher and then the displaced ciphertext which has been shifted by *j*. What are the chances that these two spots are the same character?

٥

$$p_{0-i}p_{0-j}+p_{1-i}p_{1-j}+\ldots p_{25-i}p_{25-j}$$

where all the arithmetic is modulo 26.

This is the same as

$$p_0p_{i-j}+p_1p_{1+i-j}+\ldots p_{25}p_{25+i-j}$$
.

Proof that this works, cont'd

- If we let V_i be the vector V shifted by i then the probability we just calculated is $V \cdot V_{i-i}$.
- By the Cauchy-Schwartz inequality, this is maximized when *i* = *j*.
- In fact $V \cdot V \approx .066$ and $V \cdot V_i \leq .045$ for $i \neq 0$.
- Once you have the key length k, you can consider the distribution of the kth letters to determine the actual key.
- Since this is a shift cipher, it suffices to just figure out what e is which should be the most frequent letter (appearing about 12.7% of the time).