Elliptic curves and the group law

- An elliptic curve over a field F (without characteristic 2 or 3) is an algebraic curve of the form

$$
y^{2}=x^{3}+b x+c
$$

where b and c are in your field and the polynomial on the right has no multiple roots.

- The points on the elliptic curve are the elements of the group together with a formal 0 which is the identity.
- When P and Q are two different points on the curve. Draw a line between P and Q and let R be the third point of intersection with the curve. Now reflect R in the x-axis and this is $P+Q$.

Elliptic curves and the group law, cont'd

- We need 0 in the case above when the line through P and Q does not intersect the curve. In this case, we say $P+Q=0$. Of course $P+0=P$ for all P.
- If $P=Q$ then we use the (formal) tangent line to the curve at P and again, if R is the other point of intersection then we reflect R in the x-axis and this is $P+P$. Finally, if the tangent line does not intersect the curve then $P+P=0$.

Example from Thursday

- An elliptic curve over a field F (without characteristic 2 or 3) is an algebraic curve of the form

$$
y^{2}=x^{3}+b x+c
$$

where b and c are in F and the polynomial on the right has no multiple roots.

- If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ and $x_{1} \neq x_{2}$ then the slope of the line through $P Q$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Then the line through $P Q$ is $y=m x+a$ where $a=y_{1}-m x_{1}$. All of these calculations are happening in F.

Example from Thursday, cont'd

- Substituting the line into the equation for the curve, we get

$$
(m x+a)^{2}=x^{3}+b x+c \text { and so } x^{3}-m x^{2}+(b-2 m a) x+c-a^{2}=0
$$

- Two roots of the last equation are $x=x_{1}$ and $x=x_{2}$ so if we call the third root x_{3} then we have
$x^{3}-m^{2} x^{2}+(b-2 m a) x+c-a^{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$.
Looking at the x^{2} term we see $-m^{2}=-\left(x_{1}+x_{2}+x_{3}\right)$.
- So $x_{3}=m^{2}-\left(x_{1}+x_{2}\right)$ and $y_{3}=m x_{3}+a=m\left(x_{3}-x_{1}\right)+y_{1}$.
- Finally
$P+Q=\left(x_{3},-y_{3}\right)=\left(m^{2}-\left(x_{1}+x_{2}\right), m\left(x_{1}-x_{3}\right)-y_{1}\right)$.

Example from Thursday, cont'd

- Now if $x_{1}=x_{2}$ then there are two cases:
- If $y_{1}=-y_{2}$ then P and Q are reflected images of each other in the x-axis and so $P+Q=0$.
- If $y_{1}=y_{2}$ then $P=Q$ and we need to compute the tangent line to the curve through P. This is done formally by implicit differentiation; from the equation for the curve we get

$$
2 y y^{\prime}=3 x^{2}+b \text { and so } y^{\prime}=\frac{3 x^{2}+b}{2 y}
$$

One sees here why we want the characteristic of F not to be 2 or 3 .

- So if $y_{1} \neq 0$ then the slope of the tangent line is $m=\frac{3 x_{1}^{2}+b}{2 y_{1}}$ and the rest of the calculation is as above so

$$
\left.P+P=\left(x_{3},-y_{3}\right)=\left(m^{2}-2 x_{1}\right), m\left(x_{1}-x_{3}\right)-y_{1}\right) .
$$

- Finally, if $y_{1}=0$ then the tangent line is vertical and we get $P+P=0$.

