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Baby step - giant step algorithm

Again we try to find x from b given a generator g and
b = gx . Let N = [

√
q − 1] + 1.

We make two lists:
Baby step Giant step
g0 b
g1 bg−N

g2 bg−2N

...
...

gN−1 bg−(N−1)N

We look for a match between the two lists and if we find
one, say

g i = bg−kN then b = g i+kN

and we have found x .
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You can always find x

Note 0 ≤ x < q − 1 ≤ N2 so x = x0 + x1N for some
x0, x1 ≤ N.
This means

b = gx = gx0 · gx1N

and so
gx0 = bg−x1N .

This algorithm takes on the order of
√

q many steps.
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Abelian groups

For much of this term we have been talking about
something called abelian groups without saying so.
An abelian group is a set A together with a binary
operation + which is both commutative and associative. +
has an identity and inverses.
Examples: (Z ,+), (Q,+), (R+, ·), (Zn,+), (F ∗

q , ·) where F ∗
q

is the non-zero elements of Fq - the multiplicative group.
A special case of finite abelian groups is cyclic groups;
groups generated by a single element by repeatedly
applying the operation. In any such group we have an
analogue of the discrete log problem.
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Abelian groups, cont’d

Much of the complexity in using finite cyclic abelian groups
for cryptography is in the means by which they are
presented.
For RSA, we use Zn where n was a product of two primes
and the complexity came from the difficulty in factoring n.
For the versions of discrete log cryptosystems that we
have seen, the complexity comes from the manner in
which the multiplicative group of a finite field is presented.
For the cryptographic world, it seemed that the search was
on for complicatedly presented cyclic groups and what
better place to look for them then in algebraic geometry.
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Elliptic curves

An algebraic curve over any field F is the solution set of
some polynomial G(x , y) in two variables x and y .
This generalizes the more intuitive notion of an algebraic
curve over the reals. For instance G(x , y) could be
x2 + y2 − 1 and then the solution set is the unit circle
centred at the origin.
This curve also makes sense over other fields like the
complex numbers, the rationals and even finite fields.
The behaviour of an algebraic curve depends to some
degree on the characteristic of the field. Over a field of
characteristic 2, x2 + y2 = (x + y)2 and so ”the unit circle
is the union of two lines”.
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Elliptic curves, cont’d

Skipping ahead quickly, cubic curves (polynomials of
degree three in two variables) can be put in a canonical
form as long as the characteristic of the field is not 2 or 3.
That form looks like this:

y2 = x3 + ax + b.

where a and b are in your field. Call the polynomial on the
right hand side p(x).
In this form, an elliptic curve is one where p(x) has no
multiple roots.
Over the reals, elliptic curves in this form come in two
different flavours: p has three real roots or p has one real
root.
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Why do we care about elliptic curves? The group law

Very good question!
Because they support an abelian group structure. This
takes some explaining.
The points on the elliptic curve are the elements of the
group. We only need to explain how to add them.
The easiest case is when P and Q are two different points
on the curve. Draw a line between P and Q and let R be
the third point of intersection with the curve. Now reflect R
in the x-axis and this is P + Q.
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Why do we care about elliptic curves? The group law

There are a few cases not handled by the easy case. One
thing we need for our group is an identity element 0; we
just formally add this point to the curve (often called the
point at infinity). We need 0 in the case above when the
line through P and Q does not intersect the curve. In this
case, we say P + Q = 0. Of course P + 0 = P for all P.
If P = Q then we use the (formal) tangent line to the curve
at P and again, if R is the other point of intersection then
we reflect R in the x-axis and this is P + P. Finally, if the
tangent line does not intersect the curve then P + P = 0.
Amazingly this defines an abelian group for any elliptic
curve over any field (avoiding fields with characteristic 2 or
3 for now); the truly hard thing to prove is that + is
associative. All the other abelian group properties are
easy.
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