The Pohlig-Hellman algorithm

- Given some non-zero b ∈ F_q and generator g, how can we find x such that b = g^x?
- Write $q 1 = p_1^{k_1} \dots p_m^{k_m}$ and let ℓ^k be $p_i^{k_i}$ for some *i*.
- Now we can generate all powers

$$g^{m\frac{q-1}{\ell}}$$
 for $m=0\ldots\ell-1$.

Computed the sequence x₀, x₁,..., x_{i-1} and a sequence of elements of F_q, b₀ = b, b₁,..., b_{i-1} so that for 0 < i < k,

$$b_i = b_{i-1}g^{-x_{i-1}\ell^{i-1}}$$
 and $b_i^{\frac{q-1}{\ell^{i+1}}} = g^{x_i\frac{q-1}{\ell}}$

• Determine *x_i* by comparing to our list of powers of *g* and finally determine *x* by the Chinese Remainder Theorem.

- This attack is reasonably effective assuming that you can factor q - 1.
- It runs in time proportional to the size of the largest prime divisor of q - 1.
- As with the Pollard p 1 algorithm, the take-away here is to make sure that q 1 has some large prime factor.
- For instance, a Mersennes prime is a prime of the form 2ⁿ 1. Since there are fields of size 2ⁿ for all n, any n such that 2ⁿ 1 is prime would be a good choice. There are not known to be infinitely many such primes but there are such with millions of digits.

Baby step - giant step algorithm

- Again we try to find *x* from *b* given a generator *g* and $b = g^x$. Let $N = [\sqrt{q-1}] + 1$.
- We make two lists:

Baby step	Giant step
$\overline{g^0}$	b
g^1	bg ^{-N}
g^2	bg ^{-2N}
	:
g^{N-1}	$bg^{-(N-1)N}$

 We look for a match between the two lists and if we find one, say

$$g^i = bg^{-kN}$$
 then $b = g^{i+kN}$

and we have found x.

You can always find x

- Note $0 \le x < q 1 \le N^2$ so $x = x_0 + x_1 N$ for some $x_0, x_1 \le N$.
- This means

$$b=g^{x}=g^{x_{0}}\cdot g^{x_{1}N}$$

and so

$$g^{x_0}=bg^{-x_1N}.$$

• This algorithm takes on the order of \sqrt{q} many steps.

Index calculus attack

- Here is another attack on discrete logs. It is similar to the quadratic sieve method and I will only describe it for fields *F_p* where *p* is a prime. It can be done in general for any finite field with a little more effort.
- Now everything is a number: g is a generator of F_p and b is a non-zero element of F_p and we want to find x such that b = g^x.
- We fix some primes $p_1, p_2, ..., p_m$ and suppose that for some *k*

$$g^k \equiv p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m} \mod p.$$

Then

$$k = \alpha_1 L_g(p_1) + \alpha_2 L_g(p_2) + \ldots + \alpha_m L_g(p_m) \mod p - 1.$$

 If we do this for sufficiently many k then we will learn the value of L_g(p_i) for all i just by solving these linear equations. Now if we can find some r such that

$$bg^r \equiv p_1^{\beta_1} p_2^{\beta_2} \dots p_m^{\beta_m} \mod p$$

then

$$L_g(b) = -r + \beta_1 L_g(p_1) + \ldots + \beta_m L_g(p_m) \mod p - 1.$$

 How do we find r? Pick r's randomly between 0 and p. By the birthday problem argument, if this is going to work it will work quickly. The issue is choosing enough primes p_i so that one can generate enough g^k's.