- Given some non-zero $b \in F_{q}$ and generator g, how can we find x such that $b=g^{x}$?
- Write $q-1=p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$ and let ℓ^{k} be $p_{i}^{k_{i}}$ for some i.
- Now we can generate all powers

$$
g^{m \frac{q-1}{\ell}} \text { for } m=0 \ldots \ell-1
$$

- Computed the sequence $x_{0}, x_{1}, \ldots, x_{i-1}$ and a sequence of elements of $F_{q}, b_{0}=b, b_{1}, \ldots, b_{i-1}$ so that for $0<i<k$,

$$
b_{i}=b_{i-1} g^{-x_{i-1} \ell^{i-1}} \text { and } b_{i}^{\frac{q-1}{l^{i+1}}}=g^{x_{i} \frac{q-1}{\ell}}
$$

- Determine x_{i} by comparing to our list of powers of g and finally determine x by the Chinese Remainder Theorem.

Analysis of Pohlig-Hellman

- This attack is reasonably effective assuming that you can factor $q-1$.
- It runs in time proportional to the size of the largest prime divisor of $q-1$.
- As with the Pollard $p-1$ algorithm, the take-away here is to make sure that $q-1$ has some large prime factor.
- For instance, a Mersennes prime is a prime of the form $2^{n}-1$. Since there are fields of size 2^{n} for all n, any n such that $2^{n}-1$ is prime would be a good choice. There are not known to be infinitely many such primes but there are such with millions of digits.

Baby step - giant step algorithm

- Again we try to find x from b given a generator g and $b=g^{x}$. Let $N=[\sqrt{q-1}]+1$.
- We make two lists:

Baby step		Giant step
	g^{0}	b
g^{1}		$b g^{-N}$
g^{2}		$b g^{-2 N}$
\vdots		\vdots
g^{N-1}		$b g^{-(N-1) N}$

- We look for a match between the two lists and if we find one, say

$$
g^{i}=b g^{-k N} \text { then } b=g^{i+k N}
$$

and we have found x.

You can always find x

- Note $0 \leq x<q-1 \leq N^{2}$ so $x=x_{0}+x_{1} N$ for some $x_{0}, x_{1} \leq N$.
- This means

$$
b=g^{x}=g^{x_{0}} \cdot g^{x_{1} N}
$$

and so

$$
g^{x_{0}}=b g^{-x_{1} N}
$$

- This algorithm takes on the order of \sqrt{q} many steps.

Index calculus attack

- Here is another attack on discrete logs. It is similar to the quadratic sieve method and I will only describe it for fields F_{p} where p is a prime. It can be done in general for any finite field with a little more effort.
- Now everything is a number: g is a generator of F_{p} and b is a non-zero element of F_{p} and we want to find x such that $b=g^{x}$.
- We fix some primes $p_{1}, p_{2}, \ldots, p_{m}$ and suppose that for some k

$$
g^{k} \equiv p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} \bmod p
$$

Then

$$
k=\alpha_{1} L_{g}\left(p_{1}\right)+\alpha_{2} L_{g}\left(p_{2}\right)+\ldots+\alpha_{m} L_{g}\left(p_{m}\right) \bmod p-1
$$

- If we do this for sufficiently many k then we will learn the value of $L_{g}\left(p_{i}\right)$ for all i just by solving these linear equations.
- Now if we can find some r such that

$$
b g^{r} \equiv p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{m}^{\beta_{m}} \bmod p
$$

then

$$
L_{g}(b)=-r+\beta_{1} L_{g}\left(p_{1}\right)+\ldots+\beta_{m} L_{g}\left(p_{m}\right) \bmod p-1
$$

- How do we find r ? Pick r 's randomly between 0 and p. By the birthday problem argument, if this is going to work it will work quickly. The issue is choosing enough primes p_{i} so that one can generate enough g^{k} 's.

