The computational Diffie-Hellman problem

- How secure is this system? Of course if someone can compute discrete logs then this is not secure.
- The question of whether there is an algorithm for finding g^{xy} from g^x and g^y is known as the computational Diffie-Hellman problem.
- It is not known if this is an easier problem then solving the discrete log problem.
- It is known that solving the computational DH problem is equivalent to cracking the associated El Gamal cryptosystem.
- That is, suppose we can solve the computational DH problem for a field F_q and generator g. Now consider the ElGamal cryptosystem (F_q, g, b) and Alice's transmission (r, t). We know $b = g^a$ and $r = g^k$ so we can compute g^{ak} .
- But $t = mg^{ak}$ so $tg^{-ak} = m$ and we have decoded the message.

- Now suppose we want to solve the computational DH problem for a field F_q and generator g.
- Assume we can crack the ElGamal system with (F_q, g, b) for any b.
- Then let $b = g^x$, $r = g^y$ and t = 1.
- If we now decode (r, t) we get $m = g^{xy}$.

The Pohlig-Hellman algorithm

- Given some non-zero b ∈ F_q and generator g, how can we find x such that b = g^x?
- The first observation is that if *q* − 1 = *p*₁^{k₁} ... *p*_m^{k_m} then by the Chinese remainder theorem, it suffices to determine what *x* is congruent to mod *p*_i^{k_i}.
- So let's fix some prime ℓ just to avoid possible confusion with the characteristic of the field and suppose that ℓ^k is the largest prime power of ℓ which divides q − 1.

Pohlig-Hellman, cont'd

Suppose that

$$x \equiv x_0 + x_1\ell + x_2\ell^2 + \ldots x_{k-1}\ell^{k-1} \bmod \ell^k.$$

Now notice that

$$x(\frac{q-1}{\ell}) \equiv x_0(\frac{q-1}{\ell}) + x_1(1\frac{q-1}{\ell})\ell + \ldots \equiv x(\frac{q-1}{\ell}) \mod q-1.$$

So we get

$$b^{rac{q-1}{\ell}} = g^{x rac{q-1}{\ell}} = g^{x_0 rac{q-1}{\ell}}.$$

Now we can generate all powers

$$g^{mrac{q-1}{\ell}}$$
 for $m=0\dots\ell-1$

and determine x_0 by direct comparison.

Pohlig-Hellman, cont'd

- Now suppose that we have computed the sequence x₀, x₁,..., x_{i-1} and a sequence of elements of F_q, b₀ = b, b₁,..., b_{i-1}. How do we continue?
- Define b_i inductively so that

$$b_i = b_{i-1}g^{-x_{i-1}\ell^{i-1}} = g^{x_i\ell^i + \ldots + x_{k-1}\ell^{k-1}}$$

Compute

$$b_i^{rac{q-1}{\ell^{i+1}}}=g^{x_irac{q-1}{\ell}}$$

and again compare this to the list of all $g^{m\frac{q-1}{\ell}}$ to determine x_i .

- This attack is reasonably effective assuming that you can factor q - 1.
- It runs in time proportional to the size of the largest prime divisor of q - 1.
- As with the Pollard p 1 algorithm, the take-away here is to make sure that q 1 has some large prime factor.
- For instance, a Mersennes prime is a prime of the form 2ⁿ 1. Since there are fields of size 2ⁿ for all n, any n such that 2ⁿ 1 is prime would be a good choice. There are not known to be infinitely many such primes but there are such with millions of digits.

Baby step - giant step algorithm

- Again we try to find *x* from *b* given a generator *g* and $b = g^x$. Let $N = [\sqrt{q-1}] + 1$.
- We make two lists:

Baby step	Giant step
$\overline{g^0}$	b
g^1	bg ^{-N}
g^2	bg ^{-2N}
:	:
g^{N-1}	$bg^{-(N-1)N}$

 We look for a match between the two lists and if we find one, say

$$g^i = bg^{-kN}$$
 then $b = g^{i+kN}$

and we have found x.

You can always find x

- Note $0 \le x < q 1 \le N^2$ so $x = x_0 + x_1 N$ for some $x_0, x_1 \le N$.
- This means

$$b=g^{x}=g^{x_{0}}\cdot g^{x_{1}N}$$

and so

$$g^{x_0}=bg^{-x_1N}.$$

• This algorithm takes on the order of \sqrt{q} many steps.