The computational Diffie-Hellman problem

- How secure is this system? Of course if someone can compute discrete logs then this is not secure.
- The question of whether there is an algorithm for finding $g^{x y}$ from g^{x} and g^{y} is known as the computational Diffie-Hellman problem.
- It is not known if this is an easier problem then solving the discrete log problem.
- It is known that solving the computational DH problem is equivalent to cracking the associated El Gamal cryptosystem.
- That is, suppose we can solve the computational DH problem for a field F_{q} and generator g. Now consider the ElGamal cryptosystem (F_{q}, g, b) and Alice's transmission (r, t). We know $b=g^{a}$ and $r=g^{k}$ so we can compute $g^{a k}$.
- But $t=m g^{a k}$ so $\operatorname{tg}^{-a k}=m$ and we have decoded the message.

The computational Diffie-Hellman problem, cont'd

- Now suppose we want to solve the computational DH problem for a field F_{q} and generator g.
- Assume we can crack the ElGamal system with $\left(F_{q}, g, b\right)$ for any b.
- Then let $b=g^{x}, r=g^{y}$ and $t=1$.
- If we now decode (r, t) we get $m=g^{x y}$.

The Pohlig-Hellman algorithm

- Given some non-zero $b \in F_{q}$ and generator g, how can we find x such that $b=g^{x}$?
- The first observation is that if $q-1=p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$ then by the Chinese remainder theorem, it suffices to determine what x is congruent to $\bmod p_{i}^{k_{i}}$.
- So let's fix some prime ℓ just to avoid possible confusion with the characteristic of the field and suppose that ℓ^{k} is the largest prime power of ℓ which divides $q-1$.
- Suppose that

$$
x \equiv x_{0}+x_{1} \ell+x_{2} \ell^{2}+\ldots x_{k-1} \ell^{k-1} \bmod \ell^{k}
$$

- Now notice that

$$
x\left(\frac{q-1}{\ell}\right) \equiv x_{0}\left(\frac{q-1}{\ell}\right)+x_{1}\left(1 \frac{q-1}{\ell}\right) \ell+\ldots \equiv x\left(\frac{q-1}{\ell}\right) \bmod q-1 .
$$

- So we get

$$
b^{\frac{q-1}{\ell}}=g^{x^{\frac{q-1}{\ell}}}=g^{\chi_{0} \frac{q-1}{\ell}} .
$$

- Now we can generate all powers

$$
g^{m \frac{q-1}{\ell}} \text { for } m=0 \ldots \ell-1
$$

and determine x_{0} by direct comparison.

- Now suppose that we have computed the sequence $x_{0}, x_{1}, \ldots, x_{i-1}$ and a sequence of elements of F_{q}, $b_{0}=b, b_{1}, \ldots, b_{i-1}$. How do we continue?
- Define b_{i} inductively so that

$$
b_{i}=b_{i-1} g^{-x_{i-1} \ell^{i-1}}=g^{x_{i} i^{i}+\ldots+x_{k-1} \ell^{k-1}}
$$

- Compute

$$
b_{i}^{\frac{q-1}{l^{i+1}}}=g^{x_{i} \frac{q-1}{\ell}}
$$

and again compare this to the list of all $g^{\frac{q-1}{\ell}}$ to determine x_{i}.

Analysis of Pohlig-Hellman

- This attack is reasonably effective assuming that you can factor $q-1$.
- It runs in time proportional to the size of the largest prime divisor of $q-1$.
- As with the Pollard $p-1$ algorithm, the take-away here is to make sure that $q-1$ has some large prime factor.
- For instance, a Mersennes prime is a prime of the form $2^{n}-1$. Since there are fields of size 2^{n} for all n, any n such that $2^{n}-1$ is prime would be a good choice. There are not known to be infinitely many such primes but there are such with millions of digits.

Baby step - giant step algorithm

- Again we try to find x from b given a generator g and $b=g^{x}$. Let $N=[\sqrt{q-1}]+1$.
- We make two lists:

Baby step		Giant step
	g^{0}	b
g^{1}		$b g^{-N}$
g^{2}		$b g^{-2 N}$
\vdots		\vdots
g^{N-1}		$b g^{-(N-1) N}$

- We look for a match between the two lists and if we find one, say

$$
g^{i}=b g^{-k N} \text { then } b=g^{i+k N}
$$

and we have found x.

You can always find x

- Note $0 \leq x<q-1 \leq N^{2}$ so $x=x_{0}+x_{1} N$ for some $x_{0}, x_{1} \leq N$.
- This means

$$
b=g^{x}=g^{x_{0}} \cdot g^{x_{1} N}
$$

and so

$$
g^{x_{0}}=b g^{-x_{1} N}
$$

- This algorithm takes on the order of \sqrt{q} many steps.

