
scpmsm

Discrete logarithms and cryptosystems

Recall that we know now that there are finite fields of all
sizes pn for primes p and integers n > 0. We will write Fpn

or Fq where q is a power of a prime for these fields from
now on.
The main fact about Fq is that it has a multiplicative
generator i.e. a g of multiplicative order q− 1, and so every
non-zero element of Fq has the form gt for some unique t
with 0 ≤ t < q. If a = gt we will write Lg(a) = t and say that
the discrete logarithm of a with respect to (the base) g is t .
The use of discrete logs in cryptography is based on the
idea that the complexity of computing the logarithm in finite
fields is high. One advantage of discrete logs over RSA is
that one can use fields of size q for large q without having
to find large primes. In fact, the prime used is often 2.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Computations in F2n

Suppose we represent F2n as F2[x ]/(f ) where f is an
irreducible polynomial of degree n.
Every element of F2n is then naturally represented as a
polynomial of degree less than n, say of the form

a0 + a1x + . . .+ an−1xn−1 where ai ∈ F2 for all i .

This can be more succintly written as an n-tuple
(a0,a1, . . . ,an−1) ∈ F n

2 .
Addition then becomes

(a0,a1, . . . ,an−1) + (b0,b1, . . . ,bn−1)

= (a0 + b0,a1 + b1, . . . ,an−1 + bn−1)

where all the calculations are happening in F2. In fact,
these are XOR or “exclusive or” calculations.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Computations in F2n, cont’d

Multiplication is also implemented in a computer-friendly
way essentially by “right shift”: if we want to multiply some
n-tuple by x we have two cases: if the polynomial is of
degree < n − 1 then the tuple is of the form
(a0, . . . ,an−2,0) and the result is

(0,a0, . . . ,an−2).

Otherwise, the tuple looks like (a0, . . . ,an−2,1) and
multiplying by x yields

(0,a0, . . . ,an−2) + (c0, c1, . . . , cn−1)

where f (x) = xn + cn−1xn−1 + . . .+ c0.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

ElGamal public key cryptosystem

Taher ElGamal was one of the founders of cryptosystems
for internet browsers. He developed what is now known as
the ElGamal cryptosystem for Netscape in the 1990’s and
was responsible for the internet protocol known as SSL or
“secure socket layer”. His system was based on discrete
logarithms. Here is how this works:
Bob chooses a finite Fq, a multiplicative generator g and a
number a. He computes b = ga and makes the triple
(Fq,g,b) public but keeps the knowledge of a, the
logarithm, to himself.
When we say that Bob chooses a field Fq, he actually
chooses a particular representation of it in the form
Zp[x ]/(f ). For instance, he could make the prime p and the
polynomial f known publicly. Similarly he gives g and b in
the form of a polynomial subject to whatever form he
presents Fq.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

ElGamal public key cryptosystem, cont’d

Alice also has to encode her message as a polynomial. If
we think as we did with RSA that Alice is encoding a
message m as a number less than q = pn then we can
convert m to a polynomial as follows: write

m = a0 + a1p + a2p2 + . . .+ an−1pn−1

where a0, . . . ,an−1 are integers between 0 and p − 1. This
is m’s base p representation or its p-adic representation.
Now represent m as the polynomial

a0 + a1x + . . .+ an−1xn−1.

Now that Alice has her message as a polynomial, she
picks a random integer k and computes r = gk and
t = mbk and sends the pair (r , t) to Bob.
How can Bob decode m from (r , t)? Remember he knows
a, the discrete log of b in base g. He calculates

tr−a = mbkg−ak = mgakg−ak = m in Fq.

Bradd Hart Mathematical Introduction to Cryptography


