Main theorem of finite fields

Theorem

- Every finite field is isomorphic to $Z_{p}[x] /(f)$ for some irreducible polynomial f.
- Up to isomorphism, there is exactly one field of size p^{n} for every prime p and $n>0$.
- If F is a finite field of size p^{n} then there is some $a \in F$ such that the order of a is $p^{n}-1$ i.e. the least m such that $a^{m}=1$ is $p^{n}-1$.
- In fact, for a field F of size p^{n} there is are $\phi\left(p^{n}-1\right)$ many $a \in F$ of order $p^{n}-1$.

Proofs of the main facts

- We proved in the last class that every finite field F of size p^{n} has an element of multiplicative order $p^{n}-1$ and that every element of F satisfies the polynomial $x^{p^{n}}-x$.
- In fact, if F is a finite field, the order of any non-zero element divides $p^{n}-1$.
- Last fact from last time: if F is a finite field of characteristic p then

$$
K=\left\{a \in F: a^{p^{n}}=a\right\}
$$

is a field.

- Unfortunately, although K is always a field, depending on F, it doesn't have to have p^{n} many elements.

Proofs of the main facts, cont'd

- To find the unicorn called "a finite field of size $p^{n "}$ we need to learn a little something about fields in general.
- Claim: if F is a field and $f \in F[x]$ then there is a larger field $K, F \subseteq K$ such that f has a root in K.
- To see this, first we note that we may assume that f is irreducible over F. Then we let $K=F[x] /(f) . x$ is the solution of f in K !
- It follows that if F is any field and $f \in F[x]$ then there is a field $K, F \subseteq K$, in which f factors into linear factors completely. That is, all roots of f are already in K. Moreover, if F is finite then K is finite as well.
- We are almost there: Start with $F=Z_{p}$ and let K be a field like the one above in which all solutions of $x^{p^{n}}-x$ occur. It would seem that this field must contain our long sought field of size p^{n}.
- The only issue is whether $x^{p^{n}}-x$ has multiple roots. If it did then the set of realizations would not be of size p^{n}.
- First, notice that 0 is a root of $x^{p^{n}}-x$ of multiplicity 1 . Now suppose that $c \in K$ is a non-zero root of $x^{p^{n}}-x$ and look at the following factorization which is obtained by long division:

$$
x^{p^{n}}-x=x(x-c) \underbrace{\left(x^{p^{n-2}}+c x^{p^{n-3}}+c^{2} x^{p^{n-4}}+\ldots+c^{p^{n-2}}\right)}_{g(x)} .
$$

- If c is a multiple root then it should be a root of $g(x)$ so we evaluate $g(c)$ which is $\left(p^{n}-1\right) c^{p^{n-2}}=-c^{-1} \neq 0$.
- So K is a field of p^{n} many elements!
- Finally, suppose that F is of size p^{n} and a is a multiplicative generator i.e. order of a is $p^{n}-1$.
- Choose $f \in Z_{p}[x]$ of least degree such that $f(a)=0$. Notice that f divides $x^{p^{n}-1}-1$.
- In fact, if you think of the map sending $Z_{p}[x]$ to F by $g \mapsto g(a)$ then this map is onto and every element of F has the unique form $g(a)$ for some polynomial g of degree less than the degree of f.
- The conclusion then is that $\operatorname{deg}(f)=n$ and F is isomorphic to $Z_{p}[x] /(f)$
- But every field of size p^{n} has a solution of f and is similarly isomorphic to $Z_{p}[x]$ so F is unique and of the form
$Z_{p}[x] /(f)$.

