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Main theorem of finite fields

Theorem
Every finite field is isomorphic to Zp[x ]/(f ) for some
irreducible polynomial f .
Up to isomorphism, there is exactly one field of size pn for
every prime p and n > 0.
If F is a finite field of size pn then there is some a ∈ F such
that the order of a is pn − 1 i.e. the least m such that
am = 1 is pn − 1.
In fact, for a field F of size pn there is are φ(pn − 1) many
a ∈ F of order pn − 1.
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Proofs of the main facts

We proved in the last class that every finite field F of size
pn has an element of multiplicative order pn − 1 and that
every element of F satisfies the polynomial xpn − x .
In fact, if F is a finite field, the order of any non-zero
element divides pn − 1.
Last fact from last time: if F is a finite field of characteristic
p then

K = {a ∈ F : apn
= a}

is a field.
Unfortunately, although K is always a field, depending on
F , it doesn’t have to have pn many elements.
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Proofs of the main facts, cont’d

To find the unicorn called “a finite field of size pn” we need
to learn a little something about fields in general.
Claim: if F is a field and f ∈ F [x ] then there is a larger field
K , F ⊆ K such that f has a root in K .
To see this, first we note that we may assume that f is
irreducible over F . Then we let K = F [x ]/(f ). x is the
solution of f in K !
It follows that if F is any field and f ∈ F [x ] then there is a
field K , F ⊆ K , in which f factors into linear factors
completely. That is, all roots of f are already in K .
Moreover, if F is finite then K is finite as well.
We are almost there: Start with F = Zp and let K be a field
like the one above in which all solutions of xpn − x occur. It
would seem that this field must contain our long sought
field of size pn.
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Proofs of the main facts, cont’d

The only issue is whether xpn − x has multiple roots. If it
did then the set of realizations would not be of size pn.
First, notice that 0 is a root of xpn − x of multiplicity 1. Now
suppose that c ∈ K is a non-zero root of xpn − x and look
at the following factorization which is obtained by long
division:

xpn − x = x(x − c) (xpn−2
+ cxpn−3

+ c2xpn−4
+ . . .+ cpn−2

)︸ ︷︷ ︸
g(x)

.

If c is a multiple root then it should be a root of g(x) so we
evaluate g(c) which is (pn − 1)cpn−2

= −c−1 6= 0.
So K is a field of pn many elements!
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Proofs of the main facts, cont’d

Finally, suppose that F is of size pn and a is a multiplicative
generator i.e. order of a is pn − 1.
Choose f ∈ Zp[x ] of least degree such that f (a) = 0.
Notice that f divides xpn−1 − 1.
In fact, if you think of the map sending Zp[x ] to F by
g 7→ g(a) then this map is onto and every element of F has
the unique form g(a) for some polynomial g of degree less
than the degree of f .
The conclusion then is that deg(f ) = n and F is isomorphic
to Zp[x ]/(f )
But every field of size pn has a solution of f and is similarly
isomorphic to Zp[x ] so F is unique and of the form
Zp[x ]/(f ).
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