- If f ∈ Z_p[x] is irreducible, g ∈ Z_p[x] is not 0 and of degree less than deg(f) then gcd(f, g) = 1.
- In fact, for such *f* and *g*, there are $u, v \in Z_p[x]$ such that 1 = uf + vy.
- Conclusion: If *f* ∈ *Z_p*[*x*] is irreducible then every non-zero element of *Z_p*[*x*]/(*f*) has a multiplicative inverse i.e. *Z_p*[*x*] is a field of size *pⁿ* where *n* = *deg*(*f*).
- Examples: $Z_2[x]/(x^2 + x + 1)$ and $Z_2[x]/(x^3 + x + 1)$ are fields of size 4 and 8 respectively.

Theorem

- Every finite field is isomorphic to Z_p[x]/(f) for some irreducible polynomial f.
- Up to isomorphism, there is exactly one field of size pⁿ for every prime p and n > 0.
- If F is a finite field of size pⁿ then there is some a ∈ F such that the order of a is pⁿ − 1 i.e. the least m such that a^m = 1 is pⁿ − 1.
- In fact, for a field F of size pⁿ there is are φ(pⁿ − 1) many a ∈ F of order pⁿ − 1.