Cut to the chase

- Where do the finite fields come from? From $Z_{\rho}[x]$ itself.
- Fix $f \in Z_p[x]$ and write

$$g \equiv h \mod f$$

if f divides g - h.

- This is an equivalence relation just like conguences mod *n* was for integers.
- Notice that every g ∈ Z_p[x] is equivalent to one with degree
 deg(f); in fact, if

$$g = qf + r$$

then $g \equiv r \mod f$.

- It follows that there are only finitely many equivalence classes of Z_p[x] mod f.
- In fact, no two polynomials of degree < deg(f) are equivalent and so there are pⁿ many equivalence classes of polynomials in Z_p[x] mod f where n = deg(f).

The object $Z_p[x]/(f)$

- Write Z_p[x]/(f) for the equivalence classes of Z_p[x] modulo f.
- As with the integers, addition and multiplication of equivalence classes of Z_p[x] mod f is well-defined. That is,

$$g \equiv g' \mod f$$
 and $h \equiv h' \mod f$

then

$$g + h \equiv g' + h' \mod f$$
 and $gh \equiv g'h' \mod f$.

- All basic rules of arithmetic now apply. In particular, the class of 0 is the additive identity and the class of 1 is the multiplicative identity.
- The rest of the properties of Z_p[x] depend on the properties of f.

The object $Z_p[x]/(f)$ cont'd

- If f is reducible over Z_p, say f = gh then Z_p[x]/(f) is not a field since gh = 0 mod f but neither g nor h is 0 mod f.
- We want to show that if *f* is irreducible over Z_p then Z_p[x]/(*f*) is a field. For this we need to develop the notion of gcd's of polynomials.

Definition

If $f, g \in Z_p[x]$ then f = gcd(g, h) if f is monic (has lead coefficient 1), divides g and h and if any other f' divides g and h then f' divides f.

• Claim: gcd(g, h) exists and is unique.

- If f ∈ Z_p[x] is irreducible, g ∈ Z_p[x] is not 0 and of degree less than deg(f) then gcd(f, g) = 1.
- In fact, for such *f* and *g*, there are $x, y \in Z_p[x]$ such that 1 = xf + gy.
- Conclusion: If *f* ∈ Z_p[*x*] is irreducible then every non-zero element of Z_p[*x*]/(*f*) has a multiplicative inverse i.e. Z_p[*x*] is a field of size *pⁿ* where *n* = deg(*f*).
- Examples: $Z_2[x]/(x^2 + x + 1)$ and $Z_2[x]/(x^3 + x + 1)$ are fields of size 4 and 8 respectively.

Theorem

- Every finite field is isomorphic to Z_p[x]/(f) for some irreducible polynomial f.
- Up to isomorphism, there is exactly one field of size pⁿ for every prime p and n > 0.
- If F is a finite field of size pⁿ then there is some a ∈ F such that the order of a is pⁿ − 1 i.e. the least m such that a^m = 1 is pⁿ − 1.

Test information

- The second test will Nov. 1 at 1:30 (during class) in the T13, room 123.
- The test will be 50 minutes long.
- The topics covered will be those found in the lecture notes as well as sections 6.1 6.4 and 3.11.
- You are allowed to have the standard McMaster calculator, Casio fx-991 (no communication capability). No other aids are allowed. Please bring your ID with you.
- The best gauge of the level of the test is to look at the lecture notes, homework and practice problems.
- There will be a review class on Wednesday, Oct. 31 at 5:30 in HH 109. Please email me suggested review topics.
- I will have an office hour at 2:30 on Wednesday instead of my Thursday office hour.
- I will post practice problems from the text on the website soon.