## Cut to the chase

- Where do the finite fields come from? From $Z_{p}[x]$ itself.
- Fix $f \in Z_{p}[x]$ and write

$$
g \equiv h \bmod f
$$

if $f$ divides $g-h$.

- This is an equivalence relation just like conguences mod $n$ was for integers.
- Notice that every $g \in Z_{p}[x]$ is equivalent to one with degree $<\operatorname{deg}(f)$; in fact, if

$$
g=q f+r
$$

then $g \equiv r \bmod f$.

- It follows that there are only finitely many equivalence classes of $Z_{p}[x] \bmod f$.
- In fact, no two polynomials of degree $<\operatorname{deg}(f)$ are equivalent and so there are $p^{n}$ many equivalence classes of polynomials in $Z_{p}[x] \bmod f$ where $n=\operatorname{deg}(f)$.


## The object $Z_{p}[x] /(f)$

- Write $Z_{p}[x] /(f)$ for the equivalence classes of $Z_{p}[x]$ modulo $f$.
- As with the integers, addition and multiplication of equivalence classes of $Z_{p}[x] \bmod f$ is well-defined. That is,

$$
g \equiv g^{\prime} \bmod f \text { and } h \equiv h^{\prime} \bmod f
$$

then

$$
g+h \equiv g^{\prime}+h^{\prime} \bmod f \text { and } g h \equiv g^{\prime} h^{\prime} \bmod f
$$

- All basic rules of arithmetic now apply. In particular, the class of 0 is the additive identity and the class of 1 is the multiplicative identity.
- The rest of the properties of $Z_{p}[x]$ depend on the properties of $f$.


## The object $Z_{p}[x] /(f)$ cont'd

- If $f$ is reducible over $Z_{p}$, say $f=g h$ then $Z_{p}[x] /(f)$ is not a field since $g h=0 \bmod f$ but neither $g$ nor $h$ is $0 \bmod f$.
- We want to show that if $f$ is irreducible over $Z_{p}$ then $Z_{p}[x] /(f)$ is a field. For this we need to develop the notion of gcd's of polynomials.


## Definition

If $f, g \in Z_{p}[x]$ then $f=\operatorname{gcd}(g, h)$ if $f$ is monic (has lead coefficient 1), divides $g$ and $h$ and if any other $f^{\prime}$ divides $g$ and $h$ then $f^{\prime}$ divides $f$.

- Claim: $\operatorname{gcd}(g, h)$ exists and is unique.


## Take away about gcd's

- If $f \in Z_{p}[x]$ is irreducible, $g \in Z_{p}[x]$ is not 0 and of degree less than $\operatorname{deg}(f)$ then $\operatorname{gcd}(f, g)=1$.
- In fact, for such $f$ and $g$, there are $x, y \in Z_{p}[x]$ such that $1=x f+g y$.
- Conclusion: If $f \in Z_{p}[x]$ is irreducible then every non-zero element of $Z_{p}[x] /(f)$ has a multiplicative inverse i.e. $Z_{p}[x]$ is a field of size $p^{n}$ where $n=\operatorname{deg}(f)$.
- Examples: $Z_{2}[x] /\left(x^{2}+x+1\right)$ and $Z_{2}[x] /\left(x^{3}+x+1\right)$ are fields of size 4 and 8 respectively.


## Main theorem of finite fields

## Theorem

- Every finite field is isomorphic to $Z_{p}[x] /(f)$ for some irreducible polynomial f.
- Up to isomorphism, there is exactly one field of size $p^{n}$ for every prime $p$ and $n>0$.
- If $F$ is a finite field of size $p^{n}$ then there is some $a \in F$ such that the order of a is $p^{n}-1$ i.e. the least $m$ such that $a^{m}=1$ is $p^{n}-1$.


## Test information

- The second test will Nov. 1 at 1:30 (during class) in the T13, room 123.
- The test will be 50 minutes long.
- The topics covered will be those found in the lecture notes as well as sections 6.1-6.4 and 3.11.
- You are allowed to have the standard McMaster calculator, Casio fx-991 (no communication capability). No other aids are allowed. Please bring your ID with you.
- The best gauge of the level of the test is to look at the lecture notes, homework and practice problems.
- There will be a review class on Wednesday, Oct. 31 at 5:30 in HH 109. Please email me suggested review topics.
- I will have an office hour at 2:30 on Wednesday instead of my Thursday office hour.
- I will post practice problems from the text on the website soon.

