Euclidean algorithm

Lemma

For $f, g, h \in F[x]$ where F is a field

•
$$deg(f+g) \le max(deg(f), deg(g)).$$

2 If $f, g \neq 0$ then deg(fg) = deg(f) + deg(g).

3) If
$$fg = 0$$
 then $f = 0$ or $g = 0$.

• If fh = gh and h
$$\neq$$
 0 then f = g.

() If $f \neq 0$ then there exists g with fg = 1 iff deg(f) = 0.

Theorem (Euclidean algorithm)

For a field F, $f, g \in F[x]$ with $deg(g) \neq 0$ there exist unique $q, r \in F[x]$ where deg(r) < deg(g) and

$$f = qg + r$$
.

Irreducible polynomials

- For polynomials *f*, *g* ∈ *F*[*x*], we say that *g* divides *f* if there is some *h* ∈ *F*[*x*], *f* = *gh*.
- We say that *f* ∈ *F*[*x*] is irreducible over *F* if whenever *g* ∈ *F*[*x*] divides *f* then either *deg*(*g*) = *deg*(*f*) or *deg*(*g*) = 0.
- Notice that $a_1x + a_0$ is irreducible for any $a_1 \neq 0$.
- Polynomials can also be thought of as functions on the underlying field but you must be careful. If *f* ∈ *F*[*x*] for some field *F* then for any *c* ∈ *F*, *f*(*c*) makes sense by direct substitution.
- On the other hand, it is possible for two polynomials to agree on all c ∈ F but not to be equal as polynomials.

Lemma

Suppose $f \in F[x]$.

- If f(c) = 0 for some $c \in F$ then x c divides f.
- If f has degree n then f has at most n roots.
- If deg(f) = 2,3 then f is irreducible iff f has no root in F.

Cut to the chase

- Where do the finite fields come from? From $Z_{\rho}[x]$ itself.
- Fix $f \in Z_p[x]$ and write

$$g \equiv h \mod f$$

if f divides g - h.

- This is an equivalence relation just like conguences mod *n* was for integers.
- Notice that every g ∈ Z_p[x] is equivalent to one with degree
 deg(f); in fact, if

$$g = qf + r$$

then $g \equiv r \mod f$.

- It follows that there are only finitely many equivalence classes of Z_p[x] mod f.
- In fact, no two polynomials of degree < deg(f) are equivalent and so there are pⁿ many equivalence classes of polynomials in Z_p[x] mod f where n = deg(f).

The object $Z_p[x]/(f)$

- Write Z_p[x]/(f) for the equivalence classes of Z_p[x] modulo f.
- As with the integers, addition and multiplication of equivalence classes of Z_p[x] mod f is well-defined. That is,

$$g \equiv g' \mod f$$
 and $h \equiv h' \mod f$

then

$$g + h \equiv g' + h' \mod f$$
 and $gh \equiv g'h' \mod f$.

- All basic rules of arithmetic now apply. In particular, the class of 0 is the additive identity and the class of 1 is the multiplicative identity.
- The rest of the properties of Z_p[x] depend on the properties of f.

The object $Z_p[x]/(f)$ cont'd

- If f is reducible over Z_p, say f = gh then Z_p[x]/(f) is not a field since gh = 0 mod f but neither g nor h is 0 mod f.
- We want to show that if *f* is irreducible over Z_p then Z_p[x]/(*f*) is a field. For this we need to develop the notion of gcd's of polynomials.

Definition

If $f, g \in Z_p[x]$ then f = gcd(g, h) if f is monic (has lead coefficient 1), divides g and h and if any other f' divides g and h then f' divides f.

• Claim: gcd(g, h) exists and is unique.