Euclidean algorithm

Lemma

For $f, g, h \in F[x]$ where F is a field
(1) $\operatorname{deg}(f+g) \leq \max (\operatorname{deg}(f), \operatorname{deg}(g))$.
(2) If $f, g \neq 0$ then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
(3) If $f g=0$ then $f=0$ or $g=0$.
(4) If $f h=g h$ and $h \neq 0$ then $f=g$.
(5) If $f \neq 0$ then there exists g with $f g=1$ iff $\operatorname{deg}(f)=0$.

Theorem (Euclidean algorithm)

For a field $F, f, g \in F[x]$ with $\operatorname{deg}(g) \neq 0$ there exist unique $q, r \in F[x]$ where $\operatorname{deg}(r)<\operatorname{deg}(g)$ and

$$
f=q g+r
$$

Irreducible polynomials

- For polynomials $f, g \in F[x]$, we say that g divides f if there is some $h \in F[x], f=g h$.
- We say that $f \in F[x]$ is irreducible over F if whenever $g \in F[x]$ divides f then either $\operatorname{deg}(g)=\operatorname{deg}(f)$ or $\operatorname{deg}(g)=0$.
- Notice that $a_{1} x+a_{0}$ is irreducible for any $a_{1} \neq 0$.
- Polynomials can also be thought of as functions on the underlying field but you must be careful. If $f \in F[x]$ for some field F then for any $c \in F, f(c)$ makes sense by direct substitution.
- On the other hand, it is possible for two polynomials to agree on all $c \in F$ but not to be equal as polynomials.

Irreducible polynomials, cont'd

Lemma

Suppose $f \in F[x]$.
(1) If $f(c)=0$ for some $c \in F$ then $x-c$ divides f.
(2) If f has degree n then f has at most n roots.
(3) If $\operatorname{deg}(f)=2,3$ then f is irreducible iff f has no root in F.

Cut to the chase

- Where do the finite fields come from? From $Z_{p}[x]$ itself.
- Fix $f \in Z_{p}[x]$ and write

$$
g \equiv h \bmod f
$$

if f divides $g-h$.

- This is an equivalence relation just like conguences mod n was for integers.
- Notice that every $g \in Z_{p}[x]$ is equivalent to one with degree $<\operatorname{deg}(f)$; in fact, if

$$
g=q f+r
$$

then $g \equiv r \bmod f$.

- It follows that there are only finitely many equivalence classes of $Z_{p}[x] \bmod f$.
- In fact, no two polynomials of degree $<\operatorname{deg}(f)$ are equivalent and so there are p^{n} many equivalence classes of polynomials in $Z_{p}[x] \bmod f$ where $n=\operatorname{deg}(f)$.

The object $Z_{p}[x] /(f)$

- Write $Z_{p}[x] /(f)$ for the equivalence classes of $Z_{p}[x]$ modulo f.
- As with the integers, addition and multiplication of equivalence classes of $Z_{p}[x] \bmod f$ is well-defined. That is,

$$
g \equiv g^{\prime} \bmod f \text { and } h \equiv h^{\prime} \bmod f
$$

then

$$
g+h \equiv g^{\prime}+h^{\prime} \bmod f \text { and } g h \equiv g^{\prime} h^{\prime} \bmod f
$$

- All basic rules of arithmetic now apply. In particular, the class of 0 is the additive identity and the class of 1 is the multiplicative identity.
- The rest of the properties of $Z_{p}[x]$ depend on the properties of f.

The object $Z_{p}[x] /(f)$ cont'd

- If f is reducible over Z_{p}, say $f=g h$ then $Z_{p}[x] /(f)$ is not a field since $g h=0 \bmod f$ but neither g nor h is $0 \bmod f$.
- We want to show that if f is irreducible over Z_{p} then $Z_{p}[x] /(f)$ is a field. For this we need to develop the notion of gcd's of polynomials.

Definition

If $f, g \in Z_{p}[x]$ then $f=\operatorname{gcd}(g, h)$ if f is monic (has lead coefficient 1), divides g and h and if any other f^{\prime} divides g and h then f^{\prime} divides f.

- Claim: $\operatorname{gcd}(g, h)$ exists and is unique.

