Finite fields

- You also know other examples of fields: Z_{p} for p a prime is a field. We saw that Z_{n} has a well-defined + and \cdot coming from the integers. If n is prime then we also know that if $a x \equiv 1 \bmod n$ has a solution as long as $\operatorname{gcd}(a, n)=1$ which happens as long as $a \neq 0$ in Z_{n}.
- As we will see, there are many other finite fields other than Z_{p}. Sometimes one writes $G F(k)$ for the finite field with k elements or other sources write F_{k} for the finite field with k elements. Your book uses GF except when talking about Z_{p} for primes p.
- We define the characteristic of a field F to be the least number n such that

$$
\underbrace{1+1+1+\ldots+1}_{n \text { times }}=0
$$

if such an n exists and we say that the characteristic is 0 otherwise.

- R, C and the rationals have characteristic $0 ; Z_{p}$ has characteristic p for any prime p.

Lemma

Any finite field has characteristic p for some prime p and size p^{n} for some positive integer n.

- Some calculations are very simple in a finite field of characteristic p; for instance, in such a field

$$
(x+y)^{\rho^{n}}=x^{p^{n}}+y^{p^{n}} .
$$

- In order to find all the finite fields, we start by studying the polynomials with coefficients from $Z_{p}, Z_{p}[x]$.
- The order or degree of a polynomial where $a_{i} \in Z_{p}$ for all i

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

is n if $a_{n} \neq 0$. That is, $\operatorname{deg}(f)=n$.

- Two polynomials in $Z_{p}[x]$ are said to be equal if all of their coefficients are equal. To add polynomials in $Z_{p}[x]$ one just add their coefficients.
- Multiplication of two polynomials in $Z_{p}[x]$ is defined in the usual way: if

$$
f(x)=a_{0}+\ldots a_{n} x^{n} \text { and } g(x)=b_{0}+\ldots+b_{m} x^{m}
$$

then

$$
\begin{aligned}
& (f g)(x)=a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\ldots \\
& \quad\left(\sum_{j=0}^{i} a_{j} b_{i-j}\right) x^{i}+\ldots+a_{n} b_{m} x^{m+n} .
\end{aligned}
$$

Euclidean algorithm

Lemma

For $f, g, h \in Z_{p}[x]$
(1) $\operatorname{deg}(f+g) \leq \max (\operatorname{deg}(f), \operatorname{deg}(g))$.
(2) If $f, g \neq 0$ then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
(3) If $f g=0$ then $f=0$ or $g=0$.
(4) If $f h=g h$ and $h \neq 0$ then $f=g$.
(5) If $f \neq 0$ then there exists g with $f g=1$ iff $\operatorname{deg}(f)=0$.

Theorem (Euclidean algorithm)

For $f, g \in Z_{p}[x]$ with $\operatorname{deg}(g) \neq 0$ there exist unique $q, r \in Z_{p}[x]$ where $\operatorname{deg}(r)<\operatorname{deg}(g)$ and

$$
f=q g+r
$$

Irreducible polynomials

- For polynomials, we say that g divides f if there is some h, $f=g h$.
- We say that f is irreducible if whenever g divides f then either $\operatorname{deg}(g)=\operatorname{deg}(f)$ or $\operatorname{deg}(g)=0$.
- Notice that $a_{1} x+a_{0}$ is irreducible for any $a_{1} \neq 0$.
- Polynomials can also be thought of as functions on the underlying field but you must be careful. If $f \in Z_{p}[x]$ and $Z_{p} \subseteq F$ for some field F then for any $c \in F, f(c)$ makes sense by direct substitution.
- On the other hand, it is possible for two polynomials to agree on all $c \in F$ but not to be equal as polynomials.

Irreducible polynomials, cont'd

Lemma

Suppose $f \in F[x]$.
(1) If $f(c)=0$ for some $c \in F$ then $x-c$ divides f.
(2) If f has degree n then f has at most n roots.
(3) If $\operatorname{deg}(f)=2,3$ then f is irreducible iff f has no root in F.

