
scpmsm

Factoring - the ancients

The original method for factoring n was just to try all primes
up to

√
n. This worked well before the computer era.

One factoring trick that has survived from before modern
times was known to Fermat; it is based on the fact that if
n = pq and p > q then

n =
(p + q)2

4
− (p − q)2

4
.

If you want to factor n, consider the sequence
n + 1,n + 4, . . . ,n + k2, . . . and look for a square. If you
find one then you can factor n.
If n = pq then this will succeed in at most (p − q)/2 steps.
The take-away for RSA then is not to make your primes be
too similar in size.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Factoring - Pollard: the ρ algorithm

Suppose that n has a prime factor p. If we pick numbers
0 < b1,b2,b3, . . . < n then eventually we will have for some
i < j , bi ≡ bj mod p and we will get that p divides
gcd(bi − bj ,n).
In this way, if n is not prime, we can find a prime factor. If p
is not too big, it isn’t hard to find it at least probabilistically.
This is the birthday problem: what is the probability that k
numbers, chosen less than n are not congruent mod p?

(1− 1/p)(1− 2/p) · · · (1− (k − 1)/p) ≈ e−k2/2p.

If k ≈ 4
√

p then this probability is < .0004.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Factoring - Pollard, cont’d

This assumes that our choices of the sequence of bi ’s is
drawn from a uniform distribution on the integers from 1 to
n.
In practice, this is hard to achieve in a computationally
simple way.
What is done is the following: start with some integer x0
less than n. This can be randomly chosen but is often just
set to 2.
Choose some ”generic” polynomial f and compute
xi+1 ≡ f (xi) mod n recursively.
In practice, a sufficiently generic polynomial is x2 + 1. The
distribution of values modulo n is pseudo-random and is
good enough for what we are doing.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Factoring - Pollard, example

x0 = 2 and n = 1079.
x1 = x2

0 + 1 mod 1079, x2 = x2
1 + 1 mod 1079, etc.

So the sequence is 2,5,26,677,833 . . .

∆ 2 5 26 677
2
5 3

26 24 21
677 675 672 651
833 831 828 807 156

gcd(1079,156) = 13 and 1079 = 13× 83.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Factoring - Pollard: the p − 1 algorithm

We are trying to factor n. Choose some integer a such that
1 < a < n − 1 and a bound B. Do the following
computation:
b1 ≡ a mod n, b2 ≡ b2

1 mod n, ..., bj ≡ bj
j−1 mod n, ...

bB ≡ bB
B−1 mod n.

Notice that bi ≡ ai! mod n for all i .
Now if p divides n and p − 1 divides B! then by Fermat’s
little theorem ap−1 ≡ 1 mod p and hence bB ≡ 1 mod p.
This means that p divides bB − 1 and so the gcd of bB − 1
and n is a factor of n.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Factoring - Pollard: the p − 1 algorithm, cont’d

Since in practice you don’t know what p is, you try to set a
bound B so that there is a high chance that p − 1 divides
B!. This will happen if p − 1 has small factors.
At each stage, you compute bi ≡ bi

i−1 mod n and then
determine gcd(bi − 1,n) and see if it is not 1.
Example: n = 295927,a = 2 and set the bound at 10 (no
more than 10 steps). In this case, n = 541× 547 and
540 = 22335 so in fact 9! will work. Try it yourself!
To thwart this attack, you need to guarantee to when you
pick p, p − 1 has at least one large prime factor. One way
to do this is to only look for primes of the form kp + 1
where k is allowed to vary and p is some fixed large prime.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Test 1 results

Average: 16.1
≥ 20: 26
17 - 19: 22
14 - 16: 18
≤ 13: 20

Bradd Hart Mathematical Introduction to Cryptography


