
scpmsm

3-pass protocol, digital version

Bob, who wants to receive something securely (and
potentially anonymously), chooses a large prime p and
publishes it.
Alice encodes her message as a number m < p and also
picks an exponent a, 0 < a < p with gcd(a,p − 1) = 1. She
posts ma mod p.
Bob picks his own exponent b, 0 < b < p with
gcd(b,p − 1) = 1 and publishes mab.
Alice knows the multiplicative inverse of a mod (p − 1) and
so she is able to post mb mod p.
Bob then uses the multiplicative inverse of b mod (p− 1) to
determine m.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Primality testing, Miller-Rabin

Lemma

If x2 ≡ y2 mod n and x 6≡ ±y mod n then n is composite.
Moreover, gcd(n, x + y) and gcd(n, x − y) are non-trivial factors
of n.

Here is the Miller-Rabin algorithm for determining primality
probabilistically:
Suppose n is odd and greater than 9. Write n − 1 = 2km
where m is odd.
Now pick a < n randomly and compute a series bi for
i = 0, . . . , k − 1 as follows:

b0 ≡ am mod n,b1 ≡ b2
0 modn, . . . ,bi ≡ b2

i−1 mod n, . . .

We will guess that n is prime if b0 ≡ ±1 mod n or if bi ≡ −1
mod n for any i . Otherwise we will say that n is composite.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Primality testing, Miller-Rabin, cont’d

Claim: If we say n is composite we will be correct.
There is at most a 25% chance that if we say n is prime
then we will be wrong.
If we repeat this test many times for randomly chosen a
and we always get the answer “prime” then with high
probability n is prime.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Primality testing, Agarwal-Kayal-Saxena

There is a primality test which is completely deterministic
and polynomial in the number of digits of the given number.
The problem is that its known run-time is order n6 although
6 is not known to be best possible.
In practice, if one needs to determine primality for a given
number, one uses the probabilistic algorithms to see if you
can prove it is not prime and then tries a series of special
purpose primality tests which are not efficient but are good
enough for ”small” numbers, say ones with fewer than 1000
digits.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Cracking RSA

How hard is it to crack the RSA encryption scheme?
Of course if you can factor pq then you can decipher
messages so the question becomes how hard is that or put
another way, what do you have to avoid in order not to let
the enemy have too easy a factoring problem?
First of all, let’s make it clear that if you knew pq and φ(pq)
then you would know p and q. This matters because if you
know φ(pq) then you know how to invert the encoding
exponent which means you can decipher anything.

Bradd Hart Mathematical Introduction to Cryptography



scpmsm

Cracking RSA, cont’d

Also a problem arises if the message is too short: Suppose
that (n,e) is an RSA pair, c is a ciphertext (i.e. of the form
me for some m) and we can find a numbers x such that
c ≡ xe mod n. Then m ≡ x .
How can this be turned into an attack? We could search all
x less than some number looking for the type of match on
the previous line.
We could also do the same running through pairs of
numbers x and y less than some number. If m was really
the product of two small numbers then we would find it
essentially by brute force. Depending on how much
compute power you have, you could do this for products of
many “small” numbers.
One often avoids this type of problem by making sure that
whatever message is sent, you fill it out will dummy entries
in order to defeat this short ciphertext attack.

Bradd Hart Mathematical Introduction to Cryptography


