3-pass protocol, physical version

- The NYTimes wants to have a way of securely receiving anonymous documents.
- It places a lockable box outside its offices and the anonymous source brings the documents, puts them in the box and puts a lock on the box.
- The editors then go outside and put their own lock on the box.
- Later, the source comes back and removes their lock.
- The editors then take their lock off the box and remove the documents.

3-pass protocol, digital version

- Bob, who wants to receive something securely (and potentially anonymously), chooses a large prime p and publishes it.
- Alice encodes her message as a number $m<p$ and also picks an exponent $a, 0<a<p$ with $\operatorname{gcd}(a, p-1)=1$. She posts $m^{a} \bmod p$.
- Bob picks his own exponent $b, 0<b<p$ with $\operatorname{gcd}(b, p-1)=1$ and publishes $m^{a b}$.
- Alice knows the multiplicative inverse of $\operatorname{amod}(p-1)$ and so she is able to post $m^{b} \bmod p$.
- Bob then uses the multiplicative inverse of $b \bmod (p-1)$ to determine m.

Primality testing, Fermat

- The simplest primality test uses Fermat's little theorem.
- Fermat in the contrapositive, says that if $0<a<n$ and $a^{n-1} \not \equiv 1 \bmod n$ then n is not prime.
- Unfortunately, there are composite numbers n such that $a^{n} \equiv a \bmod n$ for all a. In fact, there are infinitely many such numbers.

Primality testing, Miller-Rabin

Lemma

If $x^{2} \equiv y^{2} \bmod n$ and $x \not \equiv \pm y \bmod n$ then n is composite. Moreover, $\operatorname{gcd}(n, x+y)$ and $\operatorname{gcd}(n, x-y)$ are non-trivial factors of n.

- Here is the Miller-Rabin algorithm for determining primality probabilistically:
- Suppose n is odd and greater than 9. Write $n-1=2^{k} m$ where m is odd.
- Now pick $a<n$ randomly and compute a series b_{i} for $i=0, \ldots, k-1$ as follows:

$$
b_{0} \equiv a^{m} \bmod n, b_{1} \equiv b_{0}^{2} \bmod n, \ldots, b_{i} \equiv b_{i-1}^{2} \bmod n, \ldots
$$

- We will guess that n is prime if $b_{0} \equiv \pm 1 \bmod n$ or if $b_{i} \equiv-1$ $\bmod n$ for any i. Otherwise we will say that n is composite.
- Claim: If we say n is composite we will be correct.
- There is at most a 25% chance that if we say n is prime then we will be wrong.
- If we repeat this test many times for randomly chosen a and we always get the answer "prime" then with high probability n is prime.
- There is a primality test which is completely deterministic and polynomial in the number of digits of the given number.
- The problem is that its known run-time is order n^{6} although 6 is not known to be best possible.
- In practice, if one needs to determine primality for a given number, one uses the probabilistic algorithms to see if you can prove it is not prime and then tries a series of special purpose primality tests which are not efficient but are good enough for "small" numbers, say ones with fewer than 1000 digits.

