Calculation of the ϕ-function

Lemma

For p a prime, $\phi\left(p^{n}\right)=p^{n-1}(p-1)$.

Lemma

Suppose that $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$.

Theorem

If $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$ then

$$
\phi(n)=p_{1}^{m_{1}-1} p_{2}^{m_{2}-1} \cdots p_{k}^{m_{k}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)
$$

Corollary

If p and q are distinct primes then $\phi(p q)=(p-1)(q-1)$.

Exponentiation and modular arithmetic

- How do we compute m^{e} mod n for large m, e and n ?
- The trick is to do repeated squaring and calculate the remainder each time.
- That is, suppose that you want to compute $m^{2^{k}}$; let

$$
\begin{aligned}
m_{0}=m, m_{1} & \equiv m^{2} \bmod n, m_{2} \equiv m_{1}^{2} \bmod n \ldots \\
m_{k} & \equiv m^{2^{k}} \equiv m_{k-1}^{2} \bmod n
\end{aligned}
$$

- In general, if you have e written in base 2 as

$$
2^{k_{1}}+2^{k_{2}}+\ldots+2^{k_{\ell}} \text { for } 0 \leq k_{1}<k_{2} \ldots<k_{\ell}
$$

then compute $m^{2^{k_{i}}} \bmod n$ for each i and then multiply the results again modulo n.

Why does RSA work?

- Remember, for RSA, Bob chooses two distinct primes p and q, forms $n=p q$ and chooses a number e which is co-prime with $(p-1)(q-1)$. He publishes n and e.
- Alice takes her message m and computes $c \equiv m^{e} \bmod n$ and sends c to Bob.
- Bob determines a number d such that $e d \equiv 1 \bmod$ $(p-1)(q-1)$ and computes $c^{d} \bmod n$ which recovers the original m.
- Why does this work and is it effective?
- If $\operatorname{gcd}(m, n)=1$ then $m^{\phi(n)} \equiv 1 \bmod n$. Since $\phi(n)=(p-1)(q-1)$ and $e d \equiv 1 \bmod (p-1)(q-1)$, for some k, ed $=1+k(p-1)(q-1)$.
- So $\left(m^{e}\right)^{d} \equiv m \bmod n$ and we recover the message.

Why does RSA work?, cont'd

- Suppose that the $\operatorname{gcd}(m, n)=p$ (or equivalently q): Then $m^{e d} \equiv m \bmod p$ and $m^{e d} \equiv m \bmod q$ by Fermat. So by the Chinese remainder theorem, $m^{e d} \equiv m$ mod n and again we recover the message.
- All of these exponentiations can be effectively calculated in the number of digits of exponents.
- The only open question is how to pick primes p and q which are reasonably safe from attack; we will do that next week.

