Fermat's little theorem

Theorem (Fermat's little theorem)

Suppose that p is prime and p does not divide a. Then

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

- Define the Euler ϕ-function on the set of positive integers by $\phi(n)=$ the number of $k, 0<k<n$ such that $\operatorname{gcd}(k, n)=1$.

Theorem (Euler's theorem)

Suppose $n>0$ and $\operatorname{gcd}(a, n)=1$. Then

$$
a^{\phi(n)} \equiv 1 \quad \bmod n .
$$

Calculation of the ϕ-function

Lemma

For p a prime, $\phi\left(p^{n}\right)=p^{n-1}(p-1)$.

Lemma

Suppose that $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$.

Theorem

If $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$ then

$$
\phi(n)=p_{1}^{m_{1}-1} p_{2}^{m_{2}-1} \cdots p_{k}^{m_{k}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)
$$

Corollary

If p and q are distinct primes then $\phi(p q)=(p-1)(q-1)$.

Exponentiation and modular arithmetic

- How do we compute m^{e} mod n for large m, e and n ?
- The trick is to do repeated squaring and calculate the remainder each time.
- That is, suppose that you want to compute $m^{2^{k}}$; let

$$
\begin{aligned}
m_{0}=m, m_{1} & \equiv m^{2} \bmod n, m_{2} \equiv m_{1}^{2} \bmod n \ldots \\
m_{k} & \equiv m^{2^{k}} \equiv m_{k-1}^{2} \bmod n
\end{aligned}
$$

- In general, if you have e written in base 2 as

$$
2^{k_{1}}+2^{k_{2}}+\ldots+2^{k_{\ell}} \text { for } 0 \leq k_{1}<k_{2} \ldots<k_{\ell}
$$

then compute $m^{2^{k_{i}}} \bmod n$ for each i and then multiply the results again modulo n.

