Mathematics 2R3 Practice Test 1

Last Name: Initials:

Student No.:

e The test is 50 minutes long.
e The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.

e You are responsible for ensuring that your copy of the paper is complete. Bring any discrep-
ancies to the attention of the invigilator.

e Attempt all questions and write your answers in the space provided.
e Marks are indicated next to each question; the total number of marks is 25.

e You may use a Casio fx-991 calculator (no communication capability); no other aids are not
permitted.

e Use pen to write your test. If you use a pencil, your test will not be accepted for regrading
(if needed).

Good Luck!
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1. (5 marks) Put your answer in the space provided for each part.

(a) For all complex numbers z, |z| = |z|. True or false.

(b) 1,1+ x and 2? + 23 is a basis for the vector space of polynomials of degree less than or
equal to 3. True or false.

(c) Ifu=(3,1424,2) and v = (i,1 —¢,0) in C? then u-v =

(d) Suppose V is a real inner product space and u,v € V such that (u,u) = 2, (u,v) = —1
and (v,v) = 1. Compute ||u + v|]|.

(e) In the inner product space of continuous functions on [—1,1] with inner product given
by

(.90 = [ oz,

compute the inner product of 1 with 2.
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2. (a) (2 marks) Express . " in the form a + bi.

1

b) (3 marks) Find all complex numbers z such that z* = —1.
(b) ( p
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3. (5 marks) Show that the set of continuous real-valued functions f on [0, 1] which satisfy
f(0) = f(1) =0 is a subspace of all continuous functions on [0, 1].
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4. (5 marks) Suppose A is the invertible matrix

1
-1
1

_= o N
o = O

We know that the function given by (u,v) = Au- Av is an inner product on R®. Compute the
distance between (1,0,0) and (0, 1,0) with respect to this inner product.
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5. Let P be the vector space of all polynomials of degree 2 or less. On P, define an inner
product as follows: for f,g € P,

(f(x),g(x)) = fF(=D)g(=1) + f(0)g(0) + f(1)g(1).

Use the Gram-Schmidt process applied to the basis {1, x, 2%} to produce an orthogonal basis
for P, with respect to this inner product; you needn’t normalize this basis.

THE END



