An inner product on a real vector space *V* is a function that associates a real number $\langle u, v \rangle$ to each pair of vectors $u, v \in V$ such that the following axioms are satisfied, for every u, v and *w* in *V* and any scalar *k*:

$$\bigcirc \langle u,v\rangle = \langle v,u\rangle,$$

$$\bigcirc \ \langle (ku), v \rangle = k \langle u, v \rangle, \text{ and}$$

•
$$\langle u, u \rangle \ge 0$$
. Moreover $\langle u, u \rangle = 0$ iff $u = 0$.

V together with an inner product is called an inner product space.

If *V* is an inner product space then the norm of a vector $v \in V$ is written ||v|| and defined as

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

For $u, v \in V$, the distance between u and v is written d(u, v) and is defined as

$$d(u,v) = ||u-v||$$

Theorem (6.1.1)

If u, v and w are vectors in a real inner product space and k is any scalar then

Theorem

If u and v are vectors in an inner product space then

 $|\langle u, v \rangle| \le ||u||||v||$

Bradd Hart Inner Products and Orthogonality

Length and Distance

Theorem

If u and v are vectors in an inner product space and k is any scalar then:

- **○** ||u|| ≥ 0
- **2** ||u|| = 0 iff u = 0
- **3** ||ku|| = |k|||u||
- (triangle inequality) $||u + v|| \le ||u|| + ||v||$

Length and Distance

Theorem

If u and v are vectors in an inner product space and k is any scalar then:

- **○** ||u|| ≥ 0
- **2** ||u|| = 0 iff u = 0
- **3** ||ku|| = |k|||u||
- (*triangle inequality*) $||u + v|| \le ||u|| + ||v||$

Theorem

If u, v and w are vectors in an inner product space then:

- $(u, v) \geq 0$
- **2** d(u, v) = 0 iff u = v
- (u, v) = d(v, u)
- (triangle inequality) $d(u, w) \le d(u, v) + d(v, w)$

If *u* and *v* are vectors in an inner product space then

we define the angle θ between them to be that θ such that
 0 ≤ θ ≤ π and

$$cos(heta) = rac{\langle u, v
angle}{||u||||v||}$$

2 we say that *u* and *v* are orthogonal if this angle is $\pi/2$; that is, we say that *u* and *v* are orthogonal if $\langle u, v \rangle = 0$.

If u and v are vectors in an inner product space then

we define the angle θ between them to be that θ such that
 0 ≤ θ ≤ π and

$$cos(heta) = rac{\langle u, v
angle}{||u||||v||}$$

2 we say that *u* and *v* are orthogonal if this angle is $\pi/2$; that is, we say that *u* and *v* are orthogonal if $\langle u, v \rangle = 0$.

Theorem (Pythagorean Theorem)

In an inner product space, if u and v are orthogonal then

$$||u + v||^2 = ||u||^2 + ||v||^2$$