Inner product spaces

Definition

An inner product on a real vector space V is a function that associates a real number $\langle u, v\rangle$ to each pair of vectors $u, v \in V$ such that the following axioms are satisfied, for every u, v and w in V and any scalar k :
(1) $\langle u, v\rangle=\langle v, u\rangle$,
(2) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$,
(3) $\langle(k u), v\rangle=k\langle u, v\rangle$, and
(4) $\langle u, u\rangle \geq 0$. Moreover $\langle u, u\rangle=0$ iff $u=0$.
V together with an inner product is called an inner product space.

Norm and distance

Definition

If V is an inner product space then the norm of a vector $v \in V$ is written $\|v\|$ and defined as

$$
\|v\|=\sqrt{\langle v, v\rangle}
$$

For $u, v \in V$, the distance between u and v is written $d(u, v)$ and is defined as

$$
d(u, v)=\|u-v\|
$$

Properties of inner products

Theorem (6.1.1)

If u, v and w are vectors in a real inner product space and k is any scalar then
(1) $\langle 0, v\rangle=0$
(2) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
(3) $\langle u, k v\rangle=k\langle u, v\rangle$
(1) $\langle u-v, w\rangle=\langle u, w\rangle-\langle v, w\rangle$
(c) $\langle u, v-w\rangle=\langle u, v\rangle-\langle u, w\rangle$

Cauchy-Schwarz inequality

Theorem

If u and v are vectors in an inner product space then

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

Length and Distance

Theorem

If u and v are vectors in an inner product space and k is any scalar then:
(1) $\|u\| \geq 0$
(2) $\|u\|=0$ iff $u=0$
(3) $\|k u\|=|k|| | u| |$
(4) (triangle inequality) $\|u+v\| \leq\|u\|+\|v\|$

Length and Distance

Theorem

If u and v are vectors in an inner product space and k is any scalar then:
(1) $\|u\| \geq 0$
(2) $\|u\|=0$ iff $u=0$
(3) $\|k u\|=|k|| | u| |$
(9) (triangle inequality) $\|u+v\| \leq\|u\|+\|v\|$

Theorem

If u, v and w are vectors in an inner product space then:
(1) $d(u, v) \geq 0$
(2) $d(u, v)=0$ iff $u=v$
(3) $d(u, v)=d(v, u)$
(4) (triangle inequality) $d(u, w) \leq d(u, v)+d(v, w)$

Angles and orthogonality

Definition

If u and v are vectors in an inner product space then
(1) we define the angle θ between them to be that θ such that $0 \leq \theta \leq \pi$ and

$$
\cos (\theta)=\frac{\langle u, v\rangle}{\|u\|\|v\|}
$$

(2) we say that u and v are orthogonal if this angle is $\pi / 2$; that is, we say that u and v are orthogonal if $\langle u, v\rangle=0$.

Angles and orthogonality

Definition

If u and v are vectors in an inner product space then
(1) we define the angle θ between them to be that θ such that $0 \leq \theta \leq \pi$ and

$$
\cos (\theta)=\frac{\langle u, v\rangle}{\|u\|\|v\|}
$$

(2) we say that u and v are orthogonal if this angle is $\pi / 2$; that is, we say that u and v are orthogonal if $\langle u, v\rangle=0$.

Theorem (Pythagorean Theorem)

In an inner product space, if u and v are orthogonal then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

