From Friday

Theorem

If A is an $n x n$ real or complex matrix, v_{1}, \ldots, v_{k} are eigenvectors for A which correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ then v_{1}, \ldots, v_{k} are linearly independent.
(1) In order to prove this we assumed that v_{1}, \ldots, v_{k} were linearly dependent and that in fact k was the smallest possible under these circumstances.
(2) We then wrote that for some c_{1}, \ldots, c_{k} not all zero,

$$
c_{1} v_{1}+\ldots+c_{k} v_{k}=0
$$

I should have said this means that all $c_{i} \neq 0$ by the minimality of k.

From Friday

Then

$$
A\left(c_{1} v_{1}+\ldots+c_{k} v_{k}\right)=A 0=0
$$

so

$$
c_{1} \lambda_{1} v_{1}+\ldots+c_{k} \lambda_{k} v_{k}=0
$$

and by multiplying by λ_{1},

$$
c_{1} \lambda_{1} v_{1}+\ldots+c_{k} \lambda_{1} v_{k}=0
$$

so by subtracting we get

$$
c_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}+\ldots+c_{k}\left(\lambda_{k}-\lambda_{1}\right) v_{k}=0
$$

which contracts the minimality of k.

Diagonalizability

Definition

A square matrix A is called diagonalizable if there is an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. P is said to diagonalize A.

Theorem (5.2.1)

The following are equivalent for an $n \times n$ matrix A :
(1) A is diagonalizable.
(2) A has n linearly independent eignevectors.

Inner product spaces

Definition

An inner product on a real vector space V is a function that associates a real number $\langle u, v\rangle$ to each pair of vectors $u, v \in V$ such that the following axioms are satisfied, for every u, v and w in V and any scalar k :
(1) $\langle u, v\rangle=\langle v, u\rangle$,
(2) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$,
(3) $\langle k u, v\rangle=k\langle u, v\rangle$, and
(4) $\langle u, u\rangle \geq 0$. Moreover $\langle u, u\rangle=0$ iff $u=0$.
V together with an inner product is called an inner product space.

Norm and distance

Definition

If V is an inner product space then the norm of a vector $v \in V$ is written $\|v\|$ and defined as

$$
\|v\|=\sqrt{\langle v, v\rangle}
$$

For $u, v \in V$, the distance between u and v is written $d(u, v)$ and is defined as

$$
d(u, v)=\|u-v\|
$$

Properties of inner products

Theorem (6.1.1)

If u, v and w are vectors in a real inner product space and k is any scalar then
(1) $\langle 0, v\rangle=0$
(2) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
(3) $\langle u, k v\rangle=k\langle u, v\rangle$
(1) $\langle u-v, w\rangle=\langle u, w\rangle-\langle v, w\rangle$
(c) $\langle u, v-w\rangle=\langle u, v\rangle-\langle u, w\rangle$

Complex inner product spaces

Definition

An inner product on a complex vector space V is a function that associates a complex number $\langle u, v\rangle$ to each pair of vectors $u, v \in V$ such that the following axioms are satisfied, for every u, v and w in V, and scalar k :
(1) $\langle u, v\rangle=\overline{\langle v, u\rangle}$,
(2) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$,
(3) $\langle(k u), v\rangle=k\langle u, v\rangle$, and
(4) $\langle u, u\rangle \geq 0$. Moreover $\langle u, u\rangle=0$ iff $u=0$.
V together with an inner product is called a complex inner product space.

The definition of norm and distance in a complex inner product space is the same as in the real case.

