Definition

Suppose that *A* is an $n \times n$ complex matrix, λ is a scalar and $x \in \mathbb{C}^n$ is non-zero such that

$$Ax = \lambda x$$

Then λ is called an eigenvalue of *A* and *x* is called an eigenvector.

Theorem

If A is an $n \times n$ matrix and λ is a scalar then the following are equivalent:

- **1** λ is an eigenvalue of A.
- 2 The system of linear equations $(\lambda I A)x = 0$ has non-trivial solutions.
- **③** There is a non-zero $x \in \mathbb{C}^n$ such that $Ax = \lambda x$.
- λ is a solution to the characteristic equation $det(\lambda I A) = 0.$

Theorem

If A is an $n \times n$ matrix and λ is a scalar then the following are equivalent:

- **1** λ is an eigenvalue of A.
- 2 The system of linear equations $(\lambda I A)x = 0$ has non-trivial solutions.
- **③** There is a non-zero $x \in \mathbb{C}^n$ such that $Ax = \lambda x$.
- 3 λ is a solution to the characteristic equation $det(\lambda I A) = 0.$

Definition

If λ is an eigenvalue for A, an $n \times n$ matrix, then the set of all x such that $Ax = \lambda x$ forms a subspace of \mathbb{C}^n which is called the eigenspace of A corresponding to λ .

Definition

A square matrix A is called diagonalizable if there is an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix. P is said to diagonalize A.

Theorem (5.2.1)

The following are equivalent for an $n \times n$ matrix A:

- A is diagonalizable.
- 2 A has n linearly independent eignevectors.