Eigenvalues

Definition

Suppose that A is an $n \times n$ complex matrix, λ is a scalar and $x \in \mathbb{C}^{n}$ is non-zero such that

$$
A x=\lambda x
$$

Then λ is called an eigenvalue of A and x is called an eigenvector.

Eigenvalues, cont'd

Theorem

If A is an $n \times n$ matrix and λ is a scalar then the following are equivalent:
(1) λ is an eigenvalue of A.
(2) The system of linear equations $(\lambda I-A) x=0$ has non-trivial solutions.
(3) There is a non-zero $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$.
(4) λ is a solution to the characteristic equation $\operatorname{det}(\lambda I-A)=0$.

Eigenvalues, cont'd

Theorem

If A is an $n \times n$ matrix and λ is a scalar then the following are equivalent:
(1) λ is an eigenvalue of A.
(2) The system of linear equations $(\lambda I-A) x=0$ has non-trivial solutions.
(3) There is a non-zero $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$.
(4) λ is a solution to the characteristic equation $\operatorname{det}(\lambda I-A)=0$.

Definition

If λ is an eigenvalue for A, an $n \times n$ matrix, then the set of all x such that $A x=\lambda x$ forms a subspace of \mathbb{C}^{n} which is called the eigenspace of A corresponding to λ.

Diagonalizability

Definition

A square matrix A is called diagonalizable if there is an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. P is said to diagonalize A.

Theorem (5.2.1)

The following are equivalent for an $n \times n$ matrix A :
(1) A is diagonalizable.
(2) A has n linearly independent eignevectors.

