Complex vector spaces

- Suppose V is a set together with the operations + and multiplication by complex numbers i.e. the scalars are now complex. Then we call V a complex vector space if the same 10 axioms from section 4.1 are satisfied.
- The definition of subspace remains the same for complex vector spaces; the main Theorem for identifying subspaces is also the same i.e. it is sufficient for a subset of a vector space to be closed under + and scalar multiplication to be a subspace.
- Some things do change:

Definition

If $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are vectors in C^{n} then we define the dot product as

$$
u \cdot v=u_{1} \bar{v}_{1}+u_{2} \bar{v}_{2}+\ldots+u_{n} \bar{v}_{n}
$$

Properties of the dot product

Theorem (5.3.1)

If u, v and w are vectors in C^{n} and k is any complex number (scalar) then
(1) $u \cdot v=\overline{v \cdot u}$,
(2) $(u+v) \cdot w=u \cdot w+v \cdot w$,
(3) $(k u) \cdot v=k(u \cdot v)$, and
(4) $u \cdot u \geq 0$. Moreover $u \cdot u=0$ iff $u=0$.

The complex norm

For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in C^{n}, we define

$$
\|u\|=\sqrt{u \cdot u}=\sqrt{\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}+\ldots+\left|u_{n}\right|^{2}}
$$

Linear independence and bases in complex vector spaces

- Linear independence in complex vector spaces is identical to linear independence in real vector spaces with the only change being that the scalars are complex.
- A basis for a complex vector space is a maximal linearly independent subset of that space.
- Every complex vector space has a basis and the size of the basis is determined by the space itself so in particular if the space is finite-dimensional then all bases have the same size.

How to form a basis

Theorem (Plus/Minus Theorem, 4.5.3)

Let S be a non-empty subset of a vector space V.
(1) If S is linearly independent and v is in V but not in the span of S then $S \cup\{v\}$ is linearly independent.
(2) If v in S is expressible as a linear combination of other vectors from S then the spans of S and $S \backslash\{v\}$ (S without $v)$ are the same.

Coordinates relative to a basis

Theorem (4.4.1)

If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V then every v in V can be written as

$$
v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}
$$

for a unique choice of scalars $c_{1}, c_{2}, \ldots, c_{n}$.

Eigenvalues

Definition

Suppose that A is an $n \times n$ complex matrix, λ is a scalar and $x \in \mathbb{C}^{n}$ is non-zero such that

$$
A x=\lambda x
$$

Then λ is called an eigenvalue of A and x is called an eigenvector.

Eigenvalues, cont'd

Theorem

If A is an $n \times n$ matrix and λ is a scalar then the following are equivalent:
(1) λ is an eigenvalue of A.
(2) The system of linear equations $(\lambda I-A) x=0$ has non-trivial solutions.
(3) There is a non-zero $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$.
(4) λ is a solution to the characteristic equation $\operatorname{det}(\lambda I-A)=0$.

Definition

If λ is an eigenvalue for A, an $n \times n$ matrix, then the set of all x such that $A x=\lambda x$ forms a subspace of \mathbb{C}^{n} which is called the eigenspace of A corresponding to λ.

Diagonalizability

Definition

A square matrix A is called diagonalizable if there is an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. P is said to diagonalize A.

Theorem (5.2.1)

The following are equivalent for an $n \times n$ matrix A :
(1) A is diagonalizable.
(2) A has n linearly independent eignevectors.

