Vector Space Axioms

Suppose V is a set together with the operations + and multiplication by scalars (real numbers). Then we call V a (real) vector space if the following axioms are satisfied:
(1) If u and v are objects in V, then $u+v$ is in V;
(2) For all u and v in $V, u+v=v+u$;
(3) For all u, v and w in $V, u+(v+w)=(u+v)+w$;
(9) There is an object 0 in V such that for all u in $V, 0+u=u$;
(0) For all u in V, there is an object $-u$ in V such that $u+(-u)=0$;
(0) For any scalar k and any u in $V, k u$ is in V;
(3) For any scalar k and u, v in $V, k(u+v)=k u+k v$;
(B) For scalars k and m, and any u in $V,(k+m) u=k u+m u$;
(For scalars k and m, and any u in $V, k(m u)=(k m) u$; and
(1) For all u in $V, 1 u=u$.

Subspaces

Definition

A subset W of a vector space V is a subspace of V if W is a vector space under the addition and scalar multiplication defined on V.

Subspaces

Definition

A subset W of a vector space V is a subspace of V if W is a vector space under the addition and scalar multiplication defined on V.

Theorem

A non-empty subset W of a vector space V is a subspace of V if
(1) W is closed under + i.e. if u and v are in W then $u+v$ is in W, and
(2) W is closed under scalar multiplication i.e. if k is a scalar and u is in W then $k u$ is in W.

Linear independence

Definition

If $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a non-empty set of vectors such that the only solution for scalars $k_{1}, k_{2}, \ldots, k_{r}$ of the equation

$$
k_{1} v_{1}+k_{2} v_{2}+\ldots+k_{r} v_{r}=0
$$

is $k_{1}=k_{2}=\ldots=k_{r}=0$ then S is said to be linearly independent. Otherwise, S is linearly dependent.

Basis and Dimension

Definition

If V is a vector space and $S=\left\{v_{1}, v_{2} \ldots, v_{n}\right\}$ is a set of vectors
in V then S is said to be a basis for V if
(1) S is linearly independent and
(2) S spans V.

Basis and Dimension

Definition

If V is a vector space and $S=\left\{v_{1}, v_{2} \ldots, v_{n}\right\}$ is a set of vectors in V then S is said to be a basis for V if
(1) S is linearly independent and
(2) S spans V.

Definition

A vector space V is called finite-dimensional if it has a finite basis. Otherwise it is called infinite-dimensional.

Theorem (4.5.1)

If V is a finite-dimensional vector space then all bases for V have the same number of vectors.

Complex vector spaces

- Suppose V is a set together with the operations + and multiplication by complex numbers i.e. the scalars are now complex. Then we call V a complex vector space if the same 10 axioms from section 4.1 are satisfied.
- The definition of subspace remains the same for complex vector spaces; the main Theorem for identifying subspaces is also the same i.e. it is sufficient for a subset of a vector space to be closed under + and scalar multiplication to be a subspace.
- Some things do change:

Definition

If $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are vectors in C^{n} then we define the dot product as

$$
u \cdot v=u_{1} \bar{v}_{1}+u_{2} \bar{v}_{2}+\ldots+u_{n} \bar{v}_{n}
$$

Properties of the dot product

Theorem (5.3.1)

If u, v and w are vectors in C^{n} and k is any complex number (scalar) then
(1) $u \cdot v=\overline{v \cdot u}$,
(2) $(u+v) \cdot w=u \cdot w+v \cdot w$,
(3) $(k u) \cdot v=k(u \cdot v)$, and
(4) $u \cdot u \geq 0$. Moreover $u \cdot u=0$ iff $u=0$.

Properties of the dot product

Theorem (5.3.1)

If u, v and w are vectors in C^{n} and k is any complex number (scalar) then
(1) $u \cdot v=\overline{v \cdot u}$,
(2) $(u+v) \cdot w=u \cdot w+v \cdot w$,
(3) $(k u) \cdot v=k(u \cdot v)$, and
(4) $u \cdot u \geq 0$. Moreover $u \cdot u=0$ iff $u=0$.

The complex norm

For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in C^{n}, we define

$$
\|u\|=\sqrt{u \cdot u}=\sqrt{\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}+\ldots+\left|u_{n}\right|^{2}}
$$

