
scpmsm

Matrices with complex entries

From now on, unless it is explicitly said otherwise, matrices
will be assumed to have complex entries.
All basic linear algebra - linear equations with complex
coefficients, matrix multiplication and addition, determinant
calculations - work exactly the same over the complex
numbers as they do over the reals.
In particular, a square matrix is invertible iff its determinant
is non-zero.
The biggest advantage of using the complex numbers is
that characteristic polynomials will always have roots so
every square complex matrix has at least one eigenvalue.
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Vector Space Axioms

Suppose V is a set together with the operations + and
multiplication by scalars (real numbers). Then we call V a (real)
vector space if the following axioms are satisfied:

1 If u and v are objects in V , then u + v is in V ;
2 For all u and v in V , u + v = v + u;
3 For all u, v and w in V , u + (v + w) = (u + v) + w ;
4 There is an object 0 in V such that for all u in V , 0 + u = u;
5 For all u in V , there is an object −u in V such that

u + (−u) = 0;

6 For any scalar k and any u in V , ku is in V ;
7 For any scalar k and u, v in V , k(u + v) = ku + kv ;
8 For scalars k and m, and any u in V , (k + m)u = ku + mu;
9 For scalars k and m, and any u in V , k(mu) = (km)u; and

10 For all u in V , 1u = u.
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Subspaces

Definition
A subset W of a vector space V is a subspace of V if W is a
vector space under the addition and scalar multiplication
defined on V .

Theorem
A subset W of a vector space V is a subspace of V if

1 W is closed under + i.e. if u and v are in W then u + v is
in W, and

2 W is closed under scalar multiplication i.e. if k is a scalar
and u is in W then ku is in W.
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Linear independence

Definition
If S = {v1, v2, . . . , vr} is a non-empty set of vectors such that
the only solution for scalars k1, k2, . . . , kr of the equation

k1v1 + k2v2 + . . .+ kr vr = 0

is k1 = k2 = . . . = kr = 0 then S is said to be linearly
independent. Otherwise, S is linearly dependent.
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Basis and Dimension

Definition
If V is a vector space and S = {v1, v2 . . . , vn} is a set of vectors
in V then S is said to be a basis for V if

1 S is linearly independent and
2 S spans V .

Definition
A vector space V is called finite-dimensional if it has a finite
basis. Otherwise it is called infinite-dimensional.

Theorem (4.5.1)
If V is a finite-dimensional vector space then all bases for V
have the same number of vectors.
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