Quadratic equations and conic sections

- A quadratic equation is one of the form

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

where at least one of a, b or c is not zero.

- There are three types of conic sections in standard position:
- Ellipses and circles:

$$
\frac{x^{2}}{k^{2}}+\frac{y^{2}}{1^{2}}=1
$$

- Hyperbolas:

$$
\frac{x^{2}}{k^{2}}-\frac{y^{2}}{l^{2}}=1 \text { or } \frac{y^{2}}{k^{2}}-\frac{x^{2}}{l^{2}}=1
$$

- Parabolas:

$$
y=k x^{2} \text { or } x=k y^{2}
$$

Quadratic equations as conic sections

- Problem: How do we understand a quadratic equation as the graph of a conic section in the plane?
- Two parts of the solution:
- The conic may not be centered at the origin: we can tell this if there is no "cross-term" i.e. no xy term in the equation. Solution: complete the square to determine how translated the conic is.
- It may be rotated. You will be able to tell this if there is a cross-term present. Solution: Orthogonally diagonalize the associated quadratic form and change variables to see what conic section you have.
- For the quadratic equation

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

the associated quadratic form is

$$
a x^{2}+2 b x y+c y^{2}
$$

Some questions and answers

- What are the minimum and maximum values of a given quadratic form $q(x)$ when x is restricted to the unit ball i.e. $\|x\|=1$?
- Under what circumstances will a quadratic form always be positive when $x \neq 0$?

Theorem

(1) Suppose that A is an $n \times n$ symmetric matrix with largest eigenvalue λ_{1} and least eigenvalue λ_{n}. Then

$$
\lambda_{n}\|x\|^{2} \leq x^{\top} A x \leq \lambda_{1}\|x\|^{2}
$$

(2) $x^{\top} A x=\lambda_{1}\|x\|^{2}$ iff x is an eigenvector for λ_{1} and $x^{T} A x=\lambda_{n}\|x\|^{2}$ iff x is an eigenvector for λ_{n}.

Hessian form of the Second Derivative Test

Definition

For a function f of two variables with all second partial derivatives, define $H(x, y)$, the Hessian, as

$$
\left(\begin{array}{cc}
f_{x x}(x, y) & f_{x y}(x, y) \\
f_{y x}(x, y) & f_{y y}(x, y)
\end{array}\right)
$$

Remember that a critical point for f is a point $\left(x_{0}, y_{0}\right)$ such that $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0$.

Hessian form of the Second Derivative Test

Theorem

Suppose that $\left(x_{0}, y_{0}\right)$ is a critical point of $f(x, y)$ and that f has continuous second derivatives in an open neighbourhood of $\left(x_{0}, y_{0}\right)$. Then if $H\left(x_{0}, y_{0}\right)$ is the Hessian of f at $\left(x_{0}, y_{0}\right)$ then
(1) f has a relative minimum at $\left(x_{0}, y_{0}\right)$ if $H\left(x_{0}, y_{0}\right)$ is positive definite.
(2) f has a relative maximum at $\left(x_{0}, y_{0}\right)$ if $H\left(x_{0}, y_{0}\right)$ is negative definite.
(3) f has a saddle point at $\left(x_{0}, y_{0}\right)$ if $H\left(x_{0}, y_{0}\right)$ is indefinite.

Singular value decomposition

Theorem

Suppose that A is an $m \times n$ complex matrix with rank k. Then there are unitary matrices U and V as well as positive numbers μ_{1}, \ldots, μ_{k} such that A can be written as

$$
V\left(\begin{array}{cccc|ccc}
\mu_{1} & & & & 0 & \ldots & 0 \\
& \mu_{2} & & & \vdots & & \vdots \\
& & \ddots & & \vdots & & \vdots \\
& & & \mu_{k} & 0 & \ldots & 0 \\
\hline 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & & & \vdots & \vdots & & \vdots \\
0 & \ldots & \ldots & 0 & 0 & \ldots & 0
\end{array}\right) U .
$$

Jordan blocks

Definition

A square complex matrix of the following form

$$
\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \ldots & & \lambda & 1 \\
0 & \ldots & & 0 & \lambda
\end{array}\right)
$$

is called a Jordan block (for λ).

Jordan canonical form

Definition

A square complex matrix of the following form

$$
\left(\begin{array}{lllll}
J_{1} & & & & \\
& J_{2} & & & \\
& & J_{3} & & \\
& & & \ddots & \\
& & & & J_{k}
\end{array}\right)
$$

where $J_{1}, J_{2}, \ldots J_{k}$ are Jordan blocks of various sizes, is said to be in Jordan canonical form.

The main theorem

Theorem

- Every square complex matrix is similar to one in Jordan canonical form.
- In fact, up to permutation of the Jordan blocks, the Jordan canonical form is unique.
- The similarity class of a given $n \times n$ complex matrix A is determined by the following data: for each eigenvalue λ of A and each $k \leq n$, the number of $k \times k$ Jordan blocks for λ appearing in the canonical form for A.
- If λ is an eigenvalue of A, the dimension of the eigenspace for λ is the number of Jordan blocks for λ in the Jordan canonical form of A.

