Quadratic equations and conic sections

A quadratic equation is one of the form

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

where at least one of *a*, *b* or *c* is not zero.

- There are three types of conic sections in standard position:
 - Ellipses and circles:

$$\frac{x^2}{k^2} + \frac{y^2}{l^2} = 1$$

Hyperbolas:

$$\frac{x^2}{k^2} - \frac{y^2}{l^2} = 1$$
 or $\frac{y^2}{k^2} - \frac{x^2}{l^2} = 1$

Parabolas:

$$y = kx^2$$
 or $x = ky^2$

Quadratic equations as conic sections

- Problem: How do we understand a quadratic equation as the graph of a conic section in the plane?
- Two parts of the solution:
 - The conic may not be centered at the origin: we can tell this if there is no "cross-term" i.e. no *xy* term in the equation. Solution: complete the square to determine how translated the conic is.
 - It may be rotated. You will be able to tell this if there is a cross-term present. Solution: Orthogonally diagonalize the associated quadratic form and change variables to see what conic section you have.
 - For the quadratic equation

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0,$$

the associated quadratic form is

$$ax^2 + 2bxy + cy^2$$
.

Some questions and answers

- What are the minimum and maximum values of a given quadratic form q(x) when x is restricted to the unit ball i.e. ||x|| = 1?
- Under what circumstances will a quadratic form always be positive when x ≠ 0?

Theorem

Suppose that A is an $n \times n$ symmetric matrix with largest eigenvalue λ_1 and least eigenvalue λ_n . Then

$$\lambda_n ||\mathbf{x}||^2 \le \mathbf{x}^T \mathbf{A} \mathbf{x} \le \lambda_1 ||\mathbf{x}||^2$$

2 $x^T A x = \lambda_1 ||x||^2$ iff x is an eigenvector for λ_1 and $x^T A x = \lambda_n ||x||^2$ iff x is an eigenvector for λ_n .

Definition

For a function f of two variables with all second partial derivatives, define H(x, y), the Hessian, as

$$\left(\begin{array}{cc}f_{xx}(x,y) & f_{xy}(x,y)\\f_{yx}(x,y) & f_{yy}(x,y)\end{array}\right).$$

Remember that a critical point for *f* is a point (x_0, y_0) such that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$.

Theorem

Suppose that (x_0, y_0) is a critical point of f(x, y) and that f has continuous second derivatives in an open neighbourhood of (x_0, y_0) . Then if $H(x_0, y_0)$ is the Hessian of f at (x_0, y_0) then

- f has a relative minimum at (x₀, y₀) if H(x₀, y₀) is positive definite.
- If has a relative maximum at (x₀, y₀) if H(x₀, y₀) is negative definite.
- f has a saddle point at (x_0, y_0) if $H(x_0, y_0)$ is indefinite.

Theorem

Suppose that A is an $m \times n$ complex matrix with rank k. Then there are unitary matrices U and V as well as positive numbers μ_1, \ldots, μ_k such that A can be written as

Definition

A square complex matrix of the following form

$$\begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & & \lambda & 1 \\ 0 & \dots & & 0 & \lambda \end{pmatrix}$$

is called a Jordan block (for λ).

Definition

A square complex matrix of the following form

$$\begin{pmatrix} J_1 & J_2 & J_3 & \ddots & J_k \end{pmatrix}$$

where $J_1, J_2, \ldots J_k$ are Jordan blocks of various sizes, is said to be in Jordan canonical form.

Theorem

- Every square complex matrix is similar to one in Jordan canonical form.
- In fact, up to permutation of the Jordan blocks, the Jordan canonical form is unique.
- The similarity class of a given n × n complex matrix A is determined by the following data: for each eigenvalue λ of A and each k ≤ n, the number of k × k Jordan blocks for λ appearing in the canonical form for A.
- If λ is an eigenvalue of A, the dimension of the eigenspace for λ is the number of Jordan blocks for λ in the Jordan canonical form of A.