Normal matrices and Schur's Theorem

Definition

A complex $n \times n$ matrix A is called normal if $A^{*} A=A A^{*}$.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:
(1) A is unitarily diagonalizable.
(2) A has an orthonormal set of n eigenvectors.
(3) A is normal.

Theorem (Schur's theorem)

If A is any $n \times n$ complex matrix then there is an upper triangular matrix S and a unitary matrix P such that $A=P^{-1} S P$.

Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton Theorem)

If A is an $n \times n$ complex matrix and $p(\lambda)$ is the characteristic polynomial of A then $p(A)=0$.

Quadratic forms

Definition

Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are variables.

- A monomial of degree 2 is a function of the form $x_{i} x_{j}$ for some i, j such that $1 \leq i, j \leq n$.
- A quadratic form in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is a linear combination of monomials of degree 2.

Illustrative examples

- If A is any invertible matrix then $\langle x, y\rangle=A x \cdot A y$ is an inner product and $\langle x, x\rangle$ is a quadratic form.
- In general, if B is a symmetric matrix then $x^{\top} B x$ is a quadratic form and any quadratic form is of this kind.

Positive and negative definite

Definition

Suppose that q is a quadratic form and $q=x^{T} A x$ for some symmetric matrix A. q and A are called
(1) positive definite if $q(x)>0$ for all $x \neq 0$,
(2) negative definite if $q(x)<0$ for all $x \neq 0$, and
(3) indefinite otherwise.

Theorem

For a symmetric matrix A, A is positive (negative) definite iff all its eigenvalues are positive (negative).

Principal submatrices

Definition

If A is an $n \times n$ matrix then the principal submatrices of A are the n square matrices formed by entries in the first r rows and columns as r varies from 1 to n.

Theorem

For a symmetric matrix A, A is positive definite iff the determinants of all its principal submatrices are positive. A is negative definite if $-A$ is positive definite.

Principal Axis Theorem

Theorem (7.3.1)

If A is an $n \times n$ symmetric matrix then if P orthogonally diagonalizes A i.e. $D=P^{T} A P$ for a diagonal matrix D with diagonal $\lambda_{1}, \ldots, \lambda_{n}$, and $x=P y$ for two n-tuples of variables x and y then

$$
x^{T} A x=y^{T} D y=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\ldots+\lambda_{n} y_{n}^{2}
$$

The change of variables in the theorem, $x=P y$, is called an orthogonal change of variables.

Quadratic equations and conic sections

- A quadratic equation is one of the form

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

where at least one of a, b or c is not zero.

- There are three types of conic sections in standard position:
- Ellipses and circles:

$$
\frac{x^{2}}{k^{2}}+\frac{y^{2}}{1^{2}}=1
$$

- Hyperbolas:

$$
\frac{x^{2}}{k^{2}}-\frac{y^{2}}{l^{2}}=1 \text { or } \frac{y^{2}}{k^{2}}-\frac{x^{2}}{l^{2}}=1
$$

- Parabolas:

$$
y=k x^{2} \text { or } x=k y^{2}
$$

Quadratic equations as conic sections

- Problem: How do we understand a quadratic equation as the graph of a conic section in the plane?
- Two parts of the solution:
- The conic may not be centered at the origin: we can tell this if there is no "cross-term" i.e. no xy term in the equation. Solution: complete the square to determine how translated the conic is.
- It may be rotated. You will be able to tell this if there is a cross-term present. Solution: Orthogonally diagonalize the associated quadratic form and change variables to see what conic section you have.
- For the quadratic equation

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

the associated quadratic form is

$$
a x^{2}+2 b x y+c y^{2}
$$

