Unitary matrices

Definition

An $n \times n$ complex matrix U is called unitary if $A^* = A^{-1}$.

Theorem

The following are equivalent for an $n \times n$ complex matrix A:

- A is unitary.
- Interview of A form an orthonormal basis for Cⁿ.
- The columns of A form an orthonormal basis for Cⁿ.

Theorem

If A is $n \times n$ then the following are equivalent:

A is unitary.

②
$$||Ax|| = ||x||$$
 for all *x* ∈ *C*^{*n*}.

3 $Ax \cdot Ay = x \cdot y$ for all $x, y \in C^n$.

Definition

Suppose *A* is an $n \times n$ complex matrix. Then if *P* diagonalizes *A* and *P* is unitary then *A* is said to be unitarily diagonalizable. That is, there is an unitary matrix *P* such that $P^{-1}AP$ is diagonal.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:

- A is unitarily diagonalizable and has real eigenvalues.
- A has real eigenvalues and an orthonormal set of n eigenvectors.
- A is Hermitian.

Definition

A complex $n \times n$ matrix A is called normal if $A^*A = AA^*$.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:

- A is unitarily diagonalizable.
- A has an orthonormal set of n eigenvectors.
- A is normal.

Theorem (Schur's theorem)

If A is any $n \times n$ complex matrix then there is an upper triangular matrix S and a unitary matrix P such that $A = P^{-1}SP$.

Theorem (Cayley-Hamilton Theorem)

If A is an $n \times n$ complex matrix and $p(\lambda)$ is the characteristic polynomial of A then p(A) = 0.