Unitary matrices

Definition

An $n \times n$ complex matrix U is called unitary if $A^{*}=A^{-1}$.

Theorem

The following are equivalent for an $n \times n$ complex matrix A :
(1) A is unitary.
(2) The rows of A form an orthonormal basis for C^{n}.
(3) The columns of A form an orthonormal basis for C^{n}.

Theorem

If A is $n \times n$ then the following are equivalent:
(1) A is unitary.
(2) $\|A x\|=\|x\|$ for all $x \in C^{n}$.
(3) $A x \cdot A y=x \cdot y$ for all $x, y \in C^{n}$.

Unitary diagonalization

Definition

Suppose A is an $n \times n$ complex matrix. Then if P diagonalizes A and P is unitary then A is said to be unitarily diagonalizable. That is, there is an unitary matrix P such that $P^{-1} A P$ is diagonal.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:
(1) A is unitarily diagonalizable and has real eigenvalues.
(2) A has real eigenvalues and an orthonormal set of n eigenvectors.
(3) A is Hermitian.

Normal matrices and Schur's Theorem

Definition

A complex $n \times n$ matrix A is called normal if $A^{*} A=A A^{*}$.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:
(1) A is unitarily diagonalizable.
(2) A has an orthonormal set of n eigenvectors.
(3) A is normal.

Theorem (Schur's theorem)

If A is any $n \times n$ complex matrix then there is an upper triangular matrix S and a unitary matrix P such that $A=P^{-1} S P$.

Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton Theorem)

If A is an $n \times n$ complex matrix and $p(\lambda)$ is the characteristic polynomial of A then $p(A)=0$.

