Orthogonal matrices

Definition

A square matrix A is called orthogonal if $A^{-1}=A^{T}$.

Theorem

The following are equivalent for an $n \times n$ matrix A :
(1) A is orthogonal.
(2) The rows of A form an orthonormal basis for R^{n}.
(3) The columns of A form an orthonormal basis for R^{n}.

Orthogonal matrices, cont'd

Theorem

- The inverse of an orthogonal matrix is orthogonal.
- A product of orthogonal matrices is orthogonal.
- The determinant of an orthogonal matrix is ± 1.

Theorem

If A is $n \times n$ then the following are equivalent:
(1) A is orthogonal.
(2) $\|A x\|=\|x\|$ for all $x \in R^{n}$.
(3) $A x \cdot A y=x \cdot y$ for all $x, y \in R^{n}$.

Theorem

If P is a transition matrix from one orthonormal basis to another then P is orthogonal.

Orthogonal diagonalization

Definition

If P diagonalizes A and P is orthogonal then A is said to be orthogonally diagonalizable. That is, there is an orthogonal matrix P such that $P^{-1} A P$ is diagonal.

Theorem

If A is an $n \times n$ real matrix then the following are equivalent:
(1) A is orthogonally diagonalizable.
(2) A has an orthonormal set of n eigenvectors.
(3) A is symmetric.

Symmetric matrices

Theorem

If A is a symmetric matrix then
(1) The eigenvalues of A are all real numbers.
(2) Eigenvectors from different eigenspaces are orthogonal.

Definition

(1) An $n \times n$ complex matrix A is Hermitian if $A^{*}=A$; remember that $A^{*}=\overline{A^{T}}$, the conjugate of the transpose.
(2) An $n \times n$ complex matrix U is called unitary if $A^{*}=A^{-1}$.

Theorem

If A is a Hermitian matrix then
(1) The eigenvalues of A are all real numbers.
(2) Eigenvectors from different eigenspaces are orthogonal.

Properties of unitary matrices

Theorem

The following are equivalent for an $n \times n$ complex matrix A :
(1) A is unitary.
(2) The rows of A form an orthonormal basis for C^{n}.
(3) The columns of A form an orthonormal basis for C^{n}.

Theorem

- The inverse of an unitary matrix is unitary.
- A product of unitary matrices is unitary.
- The determinant of an unitary matrix is of norm 1.

Properties of unitary matrices, cont'd

Theorem

If A is $n \times n$ then the following are equivalent:
(1) A is unitary.
(2) $\|A x\|=\|x\|$ for all $x \in C^{n}$.
(3) $A x \cdot A y=x \cdot y$ for all $x, y \in C^{n}$.

Theorem

If P is a transition matrix from one orthonormal basis to another in a complex space then P is unitary.

Unitary diagonalization

Definition

Suppose A is an $n \times n$ complex matrix. Then if P diagonalizes A and P is unitary then A is said to be unitarily diagonalizable. That is, there is an unitary matrix P such that $P^{-1} A P$ is diagonal.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:
(1) A is unitarily diagonalizable and has real eigenvalues.
(2) A has real eigenvalues and an orthonormal set of n eigenvectors.
(3) A is Hermitian.

Normal matrices and Schur's Theorem

Definition

A complex $n \times n$ matrix A is called normal if $A^{*} A=A A^{*}$.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:
(1) A is unitarily diagonalizable.
(2) A has an orthonormal set of n eigenvectors.
(3) A is normal.

Theorem (Schur's theorem)

If A is any $n \times n$ complex matrix then there is an upper triangular matrix S and a unitary matrix P such that $A=P^{-1} S P$.

