A square matrix A is called orthogonal if $A^{-1} = A^{T}$.

Theorem

The following are equivalent for an $n \times n$ matrix A:

- A is orthogonal.
- 2 The rows of A form an orthonormal basis for Rⁿ.
- The columns of A form an orthonormal basis for Rⁿ.

Orthogonal matrices, cont'd

Theorem

- The inverse of an orthogonal matrix is orthogonal.
- A product of orthogonal matrices is orthogonal.
- The determinant of an orthogonal matrix is ± 1 .

Theorem

If A is $n \times n$ then the following are equivalent:

A is orthogonal.

2
$$||Ax|| = ||x||$$
 for all $x \in R^n$.

3
$$Ax \cdot Ay = x \cdot y$$
 for all $x, y \in \mathbb{R}^n$.

Theorem

If P is a transition matrix from one orthonormal basis to another then P is orthogonal.

If *P* diagonalizes *A* and *P* is orthogonal then *A* is said to be orthogonally diagonalizable. That is, there is an orthogonal matrix *P* such that $P^{-1}AP$ is diagonal.

Theorem

If A is an $n \times n$ real matrix then the following are equivalent:

- A is orthogonally diagonalizable.
- A has an orthonormal set of n eigenvectors.
- A is symmetric.

Symmetric matrices

Theorem

If A is a symmetric matrix then

- The eigenvalues of A are all real numbers.
- 2 Eigenvectors from different eigenspaces are orthogonal.

Definition

- An $n \times n$ complex matrix A is Hermitian if $A^* = A$; remember that $A^* = \overline{A^T}$, the conjugate of the transpose.
- 2 An $n \times n$ complex matrix U is called unitary if $A^* = A^{-1}$.

Theorem

If A is a Hermitian matrix then

- The eigenvalues of A are all real numbers.
- 2 Eigenvectors from different eigenspaces are orthogonal.

Theorem

The following are equivalent for an $n \times n$ complex matrix A:

- A is unitary.
- 2 The rows of A form an orthonormal basis for C^n .
- The columns of A form an orthonormal basis for Cⁿ.

Theorem

- The inverse of an unitary matrix is unitary.
- A product of unitary matrices is unitary.
- The determinant of an unitary matrix is of norm 1.

Properties of unitary matrices, cont'd

Theorem

If A is $n \times n$ then the following are equivalent:

A is unitary.

②
$$||Ax|| = ||x||$$
 for all *x* ∈ *C*^{*n*}.

3
$$Ax \cdot Ay = x \cdot y$$
 for all $x, y \in C^n$.

Theorem

If P is a transition matrix from one orthonormal basis to another in a complex space then P is unitary.

Suppose *A* is an $n \times n$ complex matrix. Then if *P* diagonalizes *A* and *P* is unitary then *A* is said to be unitarily diagonalizable. That is, there is an unitary matrix *P* such that $P^{-1}AP$ is diagonal.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:

- A is unitarily diagonalizable and has real eigenvalues.
- A has real eigenvalues and an orthonormal set of n eigenvectors.
- A is Hermitian.

A complex $n \times n$ matrix A is called normal if $A^*A = AA^*$.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:

- A is unitarily diagonalizable.
- A has an orthonormal set of n eigenvectors.
- A is normal.

Theorem (Schur's theorem)

If A is any $n \times n$ complex matrix then there is an upper triangular matrix S and a unitary matrix P such that $A = P^{-1}SP$.