Matrices for general linear transformations

Goal: To associate a matrices to linear transformations between finite-dimensional vector spaces.
The process: Suppose that $T: V \rightarrow W$ is a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W.
(1) Fix a basis B for V and B^{\prime} for W.
(2) Construct an $m \times n$ matrix A such that

$$
A[x]_{B}=[T(x)]_{B^{\prime}}
$$

A is called the matrix for T with respect to B and B^{\prime} and we will denote it by $[T]_{B^{\prime}, B}$.
(3) Suppose $B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Form A with column vectors $\left[T\left(u_{1}\right)\right]_{B^{\prime}},\left[T\left(u_{2}\right)\right]_{B^{\prime}}, \ldots,\left[T\left(u_{n}\right)\right]_{B^{\prime}}$.

Change of basis

The problem

Suppose we are given two bases

$$
B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \text { and } B^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}
$$

for an n-dimensional vector space V; how are B and B^{\prime} related?

The solution

Let P be the $n \times n$ matrix given by

$$
P=\left(\left[u_{1}^{\prime}\right]_{B},\left[u_{2}^{\prime}\right]_{B}, \ldots,\left[u_{n}^{\prime}\right]_{B}\right)
$$

Then $[v]_{B}=P[v]_{B^{\prime}}$ for all $v \in V . P$ is called the transition matrix from B^{\prime} to B

Change of basis, cont'd

Theorem
 If P is the transition matrix from B^{\prime} to B and Q is the transition matrix from B to B^{\prime} then $Q=P^{-1}$.

Change of basis, cont'd

- So the matrix representing the identity transformation, $I: V \rightarrow V$, with respect to B and B^{\prime} is just the change of basis matrix P.

Theorem

If $T: V \rightarrow V$ is a linear operator on a finite-dimensional vector space V and B and B^{\prime} are two bases for V then

$$
[T]_{B^{\prime}}=P^{-1}[T]_{B} P
$$

where P is the change of basis matrix from B^{\prime} to B.

Composition and inverse

Theorem

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are linear transformations between finite-dimensional vector spaces and B, B^{\prime} and $B^{\prime \prime}$ are bases for U, V and W respectively then

$$
\left[T_{2} \circ T_{1}\right]_{B^{\prime \prime}, B}=\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left[T_{1}\right]_{B^{\prime}, B}
$$

Theorem

If $T: V \rightarrow V$ is a linear operator and B is a basis for V then T is one-to-one iff $[T]_{B}$ is invertible. If T is one-to-one then

$$
\left[T^{-1}\right]_{B}=[T]_{B}^{-1}
$$

Similarity

Definition

If A and B are two $n \times n$ matrices then we say A is similar to B if there is an invertible P such that $A=P^{-1} B P$.

Fact

If A and B are similar then they have the same determinant, characteristic polynomial, eigenvalues and dimensions for eigenspaces.

Determinant and eigenvalues for linear operators

Definition

- If V is a finite-dimensional vector space and T is a linear operator on V then $\operatorname{det}(T)=\operatorname{det}\left([T]_{B}\right)$ for any basis B of V.
- If $T: V \rightarrow V$ is a linear operator then λ is an eigenvalue for T and $v \in V, v \neq 0$ is an eigenvector if $T(v)=\lambda v$. The eigenspace associated to an eigenvalue λ is the kernel of the operator $\lambda I-T$.

