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How to picture complex numbers: the complex plane
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Associate to the complex number z = a + bi the point on
the plane (a,b). r =

√
a2 + b2 is called the modulus of z

and written |z|.
We saw that z · z̄ = |z|2.
θ is called an argument for a + bi and is only determined
up to multiples of 2π.
a = r cos(θ) and b = r sin(θ) so z = r(cos(θ) + i sin(θ)).
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Exponentiation and complex numbers

We define exponentiation for complex numbers via the formula

ea+ib = ea(cos(b) + i sin(b))

In particular,
eiθ = cos(θ) + i sin(θ)

so if z = a + ib, r = |z| and θ is an argument for z then

z = reiθ
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Useful tricks with exponentiation

If z1 = r1eiθ1 and z2 = r2eiθ2 then

z1z2 = r1eiθ1r2eiθ2 = r1r2ei(θ1+θ2)

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

z1/z2 = r1eiθ1/r2eiθ2 =
r1

r2
ei(θ1−θ2)

=
r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2))

zn
1 = rn

1 einθ1

This says that when we multiply z1 and z2 we multiply their
moduli and add their arguments; when we divide we divide we
divide the moduli and subtract the arguments.
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Useful tricks with exponentiation, cont’d

Roots of unity

It is often useful to know all the solutions to xn = 1. They are

e
2kπi

n for k = 0,1, . . .n − 1.

Wonderful formula

eiπ + 1 = 0
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Matrices with complex entries

From now on, unless it is explicitly said otherwise, matrices
will be assumed to have complex entries.
All basic linear algebra - linear equations with complex
coefficients, matrix multiplication and addition, determinant
calculations - work exactly the same over the complex
numbers as they do over the reals.
In particular, a square matrix is invertible iff its determinant
is non-zero.

The biggest advantage of using the complex numbers is
that characteristic polynomials will always have roots so
every square complex matrix has at least one eigenvalue.
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