Kernel and Range

Definition

If $T: V \rightarrow W$ is a linear transformation then the kernel of T, written $\operatorname{ker}(T)$ is the set of all $v \in V$ such that $T(v)=0$. The range of T, written $R(T)$, is the set of all vectors in W of the form $T(v)$ for some $v \in V$.

Theorem

If $T: V \rightarrow W$ is a linear transformation then $\operatorname{ker}(V)$ is a subspace of V and $R(T)$ is a subspace of W.

Rank and Nullity

Definition

If $T: V \rightarrow W$ is a linear transformation then the dimension of $R(T)$ is called the rank of T and written $\operatorname{rank}(T)$. The dimension of the $\operatorname{ker}(T)$ is called the nullity of T and written nullity (T).

Theorem

If A is a matrix then nullity $\left(T_{A}\right)=\operatorname{nullity}(A)$ and $\operatorname{rank}\left(T_{A}\right)=$ $\operatorname{rank}(A)$.

Theorem

If $T: V \rightarrow W$ is a linear transformation from an n-dimensional vector space V then $\operatorname{rank}(T)+\operatorname{nullity}(T)=n$.

One-to-one linear transformations

Definition

A linear transformation $T: V \rightarrow W$ is said to be one-to-one if T sends distinct vectors in V to distinct vectors in W. Said another way, for all $v, w \in V$, if $T(v)=T(w)$ then $v=w$.

Theorem

If $T: V \rightarrow W$ is a linear transformation then the following are equivalent:
(1) T is one-to-one.
(2) $\operatorname{ker}(T)=\{0\}$.
(3) $\operatorname{nullity}(T)=0$.

Theorem

If V is finite-dimensional and $T: V \rightarrow V$ is a linear operator then T is one-to-one iff $R(T)=V$ (the range of T is V).

Inverse linear transformations

Definition

If $T: V \rightarrow W$ is a one-to-one linear transformation, we define the inverse of T, and write T^{-1}, by $T^{-1}: R(T) \rightarrow V$ by

$$
T^{-1}(w)=v \text { iff } T(v)=w
$$

Theorem

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are one-to-one linear transformations then
(1) $T_{2} \circ T_{1}$ is one-to-one, and
(2) $\left(T_{2} \circ T_{1}\right)^{-1}=T_{1}^{-1} \circ T_{2}^{-1}$.

Surjections and isomorphisms

Definition

- If $T: V \rightarrow W$ is a linear transformation then we say that T is surjective (or onto) if the range of T is W i.e. $R(T)=W$. T is said to be a surjection.
- If $T: V \rightarrow W$ is called a bijection if it is one-to-one and onto (surjective). We also call a bijection an isomorphism. T is said to be bijective and V and W are said to be isomorphic.

Theorem

If V and W are vector spaces with different dimensions then V and W are not isomorphic.

Surjections and isomorphisms, cont'd

Theorem

If V is an n-dimensional vector space then V is isomorphic to R^{n} if V is a real vector space and is isomorphic to C^{n} if it is a complex vector space.

Corollary

If V and W have the same finite dimension then V and W are isomorphic.

