If $T : V \to W$ is a linear transformation then the *kernel* of T, written ker(T) is the set of all $v \in V$ such that T(v) = 0. The range of T, written R(T), is the set of all vectors in W of the form T(v) for some $v \in V$.

Theorem

If $T : V \to W$ is a linear transformation then ker(V) is a subspace of V and R(T) is a subspace of W.

If $T: V \to W$ is a linear transformation then the dimension of R(T) is called the rank of T and written rank(T). The dimension of the ker(T) is called the nullity of T and written nullity(T).

Theorem

If A is a matrix then nullity(T_A) = nullity(A) and rank(T_A) = rank(A).

Theorem

If $T : V \to W$ is a linear transformation from an n-dimensional vector space V then rank(T) + nullity(T) = n.

One-to-one linear transformations

Definition

A linear transformation $T : V \to W$ is said to be *one-to-one* if T sends distinct vectors in V to distinct vectors in W. Said another way, for all $v, w \in V$, if T(v) = T(w) then v = w.

Theorem

If $T : V \rightarrow W$ is a linear transformation then the following are equivalent:

T is one-to-one.

2 ker
$$(T) = \{0\}$$
.

$$onullity(T) = 0.$$

Theorem

If V is finite-dimensional and $T : V \rightarrow V$ is a linear operator then T is one-to-one iff R(T) = V (the range of T is V).

If $T : V \to W$ is a one-to-one linear transformation, we define the *inverse* of *T*, and write T^{-1} , by $T^{-1} : R(T) \to V$ by

$$T^{-1}(w) = v \text{ iff } T(v) = w$$

Theorem

If $T_1 : U \to V$ and $T_2 : V \to W$ are one-to-one linear transformations then

1
$$T_2 \circ T_1$$
 is one-to-one, and

2
$$(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}.$$

- If $T : V \to W$ is a linear transformation then we say that T is *surjective* (or onto) if the range of T is W i.e. R(T) = W. T is said to be a surjection.
- If *T* : *V* → *W* is called a *bijection* if it is one-to-one and onto (surjective). We also call a bijection an *isomorphism*. *T* is said to be bijective and *V* and *W* are said to be isomorphic.

Theorem

If V and W are vector spaces with different dimensions then V and W are not isomorphic.

Theorem

If V is an n-dimensional vector space then V is isomorphic to R^n if V is a real vector space and is isomorphic to C^n if it is a complex vector space.

Corollary

If V and W have the same finite dimension then V and W are isomorphic.