• Let *W_n* be the subspace generated by

```
1, \sin(x), \ldots, \sin(nx), \cos(x), \ldots, \cos(nx)
```

inside $C[0, 2\pi]$.

- Since the generators of each W_n form an orthogonal set, they are linearly independent and it is easy to compute the projection onto W_n.
- For any $f \in C[0, 2\pi]$ we compute

$$a_0 = \frac{\langle f, 1 \rangle}{\|1\|^2}, a_k = \frac{\langle f, \sin(kx) \rangle}{\|\sin(kx)\|^2} \text{ and } b_k = \frac{\langle f, \cos(kx) \rangle}{\|\cos(kx)\|^2}$$

for all $k \ge 1$.

Main Theorem

Theorem

If $f \in C[0, 2\pi]$ then f(x) converges to

```
a_0 + a_1 \sin(x) + a_2 \sin(2x) + \ldots + b_1 \cos(x) + b_2 \cos(2x) + \ldots
```

with respect to $\|\cdot\|$.

Example

If W is the subspace generated by

 $1, \sin(x), \sin(2x), \ldots, \cos(x), \cos(2x), \ldots$

then by the Main Theorem, $W^{\perp} = 0$. But 0^{\perp} is all of $C[0, 2\pi]$. W is not all of $C[0, 2\pi]$ since $x \notin W$ so we have an example of $(W^{\perp})^{\perp} \neq W$.

Definition

If *V* and *W* are vector spaces and $T : V \rightarrow W$ is a function from *V* to *W* then we say that *T* is a *linear transformation* if for all $u, v \in V$ and scalars *c*,

•
$$T(u + v) = T(u) + T(v)$$
, and

$$T(cu) = cT(u).$$

In the case where V = W and $T : V \rightarrow V$, we call T a *linear* operator.

Theorem

If $T: V \rightarrow W$ is a linear transformation then

1
$$T(0) = 0$$
2 $T(-v) = -T(v)$ for all $v \in V$
3 $T(v - w) = T(v) - T(w)$ for all $v, w \in V$

Very Important Fact

A linear transformation is completely determined by its action on a basis. That is, if $T: V \to W$ is a linear transformation and v_1, v_2, \ldots, v_n is a basis for V then, since any $v \in V$ is of the form

$$C_1V_1 + C_2V_2 + \ldots + C_nV_n$$

then

$$T(v) = c_1 T(v_1) + c_2 T(v_2) + \ldots + c_n T(v_n)$$

so *T* is determined by the values $T(v_1), T(v_2), \ldots, T(v_n)$.

Theorem

If U, V and W are vector spaces and $T_1 : U \to V$ and $T_2 : V \to W$ are linear transformations then the composition of T_2 with $T_1, T_2 \circ T_1$, defined by

$$(T_2 \circ T_1)(u) = T_2(T_1(u))$$

is a linear transformation from U to W.

Definition

If $T : V \to W$ is a linear transformation then the *kernel* of *T*, written ker(*T*) is the set of all $v \in V$ such that T(v) = 0. The range of *T*, written R(T), is the set of all vectors in *W* of the form T(v) for some $v \in V$.

Theorem

If $T : V \to W$ is a linear transformation then ker(V) is a subspace of V and R(T) is a subspace of W.