- Let W_{n} be the subspace generated by

$$
1, \sin (x), \ldots, \sin (n x), \cos (x), \ldots, \cos (n x)
$$

inside $C[0,2 \pi]$.

- Since the generators of each W_{n} form an orthogonal set, they are linearly independent and it is easy to compute the projection onto W_{n}.
- For any $f \in C[0,2 \pi]$ we compute

$$
a_{0}=\frac{\langle f, 1\rangle}{\|1\|^{2}}, a_{k}=\frac{\langle f, \sin (k x)\rangle}{\|\sin (k x)\|^{2}} \text { and } b_{k}=\frac{\langle f, \cos (k x)\rangle}{\|\cos (k x)\|^{2}}
$$

for all $k \geq 1$.

Main Theorem

Theorem

If $f \in C[0,2 \pi]$ then $f(x)$ converges to

$$
a_{0}+a_{1} \sin (x)+a_{2} \sin (2 x)+\ldots+b_{1} \cos (x)+b_{2} \cos (2 x)+\ldots
$$

with respect to $\|\cdot\|$.

Example

If W is the subspace generated by

$$
1, \sin (x), \sin (2 x), \ldots, \cos (x), \cos (2 x), \ldots
$$

then by the Main Theorem, $W^{\perp}=0$. But 0^{\perp} is all of $C[0,2 \pi]$. W is not all of $C[0,2 \pi]$ since $x \notin W$ so we have an example of $\left(W^{\perp}\right)^{\perp} \neq W$.

Linear Transformations

Definition

If V and W are vector spaces and $T: V \rightarrow W$ is a function from V to W then we say that T is a linear transformation if for all $u, v \in V$ and scalars c,
(1) $T(u+v)=T(u)+T(v)$, and
(2) $T(c u)=c T(u)$.

In the case where $V=W$ and $T: V \rightarrow V$, we call T a linear operator.

Properties of Linear Transformations

Theorem

If $T: V \rightarrow W$ is a linear transformation then
(1) $T(0)=0$
(2) $T(-v)=-T(v)$ for all $v \in V$
(3) $T(v-w)=T(v)-T(w)$ for all $v, w \in V$

Action on a basis

Very Important Fact

A linear transformation is completely determined by its action on a basis. That is, if $T: V \rightarrow W$ is a linear transformation and $v_{1}, v_{2}, \ldots, v_{n}$ is a basis for V then, since any $v \in V$ is of the form

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}
$$

then

$$
T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{n} T\left(v_{n}\right)
$$

so T is determined by the values $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$.

Composition of Linear Transformations

Theorem

If U, V and W are vector spaces and $T_{1}: U \rightarrow V$ and
$T_{2}: V \rightarrow W$ are linear transformations then the composition of T_{2} with $T_{1}, T_{2} \circ T_{1}$, defined by

$$
\left(T_{2} \circ T_{1}\right)(u)=T_{2}\left(T_{1}(u)\right)
$$

is a linear transformation from U to W.

Kernel and Range

Definition

If $T: V \rightarrow W$ is a linear transformation then the kernel of T, written $\operatorname{ker}(T)$ is the set of all $v \in V$ such that $T(v)=0$. The range of T, written $R(T)$, is the set of all vectors in W of the form $T(v)$ for some $v \in V$.

Theorem

If $T: V \rightarrow W$ is a linear transformation then $\operatorname{ker}(V)$ is a subspace of V and $R(T)$ is a subspace of W.

