Continuous functions on $[0, 2\pi]$

- We have seen that C[0, 2π] is a vector space with the integral inner product.
- With respect to this inner product, if W is a finite-dimensional subspace of C[0, 2π], then the distance from any f to W is given by ||f - proj_W(f)||.
- We have a known list of orthogonal functions in $C[0, 2\pi]$:

$$1, \sin(x), \sin(2x), \ldots \cos(x), \cos(2x), \ldots$$

Integral calculations

• If $n \neq 0$ then

$$\int_0^{2\pi} e^{int} dt = 0$$

and is 2π if n = 0.

•

$$\int_0^{2\pi} e^{int} e^{imt} dt = \int_0^{2\pi} (\cos(nt)\cos(mt) - \sin(nt)\sin(mt)) dt$$
$$+ i \int_0^{2\pi} (\cos(nt)\sin(mt) + \sin(nt)\cos(mt)) dt.$$

• The imaginary part gives (substitute -n for n)

$$\int_0^{2\pi} (\cos(nt)\sin(mt) + \sin(nt)\cos(mt))dt = 0$$
and
$$\int_0^{2\pi} (\cos(nt)\sin(mt) - \sin(nt)\cos(mt))dt = 0.$$

Integral calculations, cont'd

So for all m, n,

$$\int_0^{2\pi} (\cos(nt)\sin(mt) = 0$$

• If $m \neq n$ and both are positive then the real part gives (again substituting -n for n)

$$\int_0^{2\pi} (\cos(nt)\cos(mt) - \sin(nt)\sin(mt))dt = 0$$
and
$$\int_0^{2\pi} (\cos(nt)\cos(mt) + \sin(nt)\sin(mt))dt = 0.$$

• We conclude for $m \neq n$

$$\int_0^{2\pi} \cos(nt) \cos(mt) = 0 \text{ and } \int_0^{2\pi} \sin(nt) \sin(mt) = 0.$$

Integral calculations, cont'd

• If m = n then

$$\int_0^{2\pi} (\cos^2(nt) + \sin^2(nt)) dt = 2\pi$$
 and so
$$\int_0^{2\pi} \cos^2(nt) dt = \int_0^{2\pi} \sin^2(nt) dt = \pi.$$

• We conclude then that in $C[0, 2\pi]$ that

$$1, \sin(x), \ldots, \sin(nx), \ldots, \cos(x), \ldots, \cos(nx), \ldots$$

forms an orthogonal set and that $\|\mathbf{1}\| = \sqrt{2\pi}$ and $\|\cos(nx)\| = \|\sin(nx)\| = \sqrt{\pi}$.

Fourier series

• Let W_n be the subspace generated by

$$1, \sin(x), \ldots, \sin(nx), \cos(x), \ldots, \cos(nx)$$

inside $C[0, 2\pi]$.

- Since the generators of each W_n form an orthogonal set, they are linearly independent and it is easy to compute the projection onto W_n .
- For any $f \in C[0, 2\pi]$ we compute

$$a_0 = \frac{\langle f, 1 \rangle}{\|1\|^2}, a_k = \frac{\langle f, \sin(kx) \rangle}{\|\sin(kx)\|^2} \text{ and } b_k = \frac{\langle f, \cos(kx) \rangle}{\|\cos(kx)\|^2}$$

for all $k \ge 1$.

Main Theorem

Theorem

If $f \in C[0, 2\pi]$ then f(x) converges to

$$a_0 + a_1 \sin(x) + a_2 \sin(2x) + \ldots + b_1 \cos(x) + b_2 \cos(2x) + \ldots$$

with respect to $\|\cdot\|$.

Example

If W is the subspace generated by

$$1, \sin(x), \sin(2x), \dots, \cos(x), \cos(2x), \dots$$

then by the Main Theorem, $W^{\perp}=0$. But 0^{\perp} is all of $C[0,2\pi]$. W is not all of $C[0,2\pi]$ since $x \notin W$ so we have an example of $(W^{\perp})^{\perp} \neq W$.