Projection as best approximation

Theorem

Suppose that W is a finite-dimensional subspace of an inner product space V. Then for any $u \in V$, $\operatorname{proj}_{W} u$ is the closest vector in W to u; that is, if $w \in W$ is any vector other than $\operatorname{proj}_{w} u$ then

$$
\|u-w\|>\left\|u-\operatorname{proj}_{w} u\right\|
$$

Normal equations

- It is not always possible to solve $A x=b$. What about finding x such that $\|A x-b\|$ is minimized?
- If W is the columnspace of A then this means finding x such that $A x=\operatorname{proj}_{w} b$.
- We want to find x such that $A x-b$ is orthogonal to W.
- Since to be orthogonal to the columnspace of A means being in the nullspace of A^{T}, this means we want to solve

$$
A^{T} A x=A^{T} b
$$

These are the normal equations.

- If the columns of A are linearly independent then

$$
\operatorname{proj}_{W} b=A\left(A^{T} A\right)^{-1} A^{T} b
$$

Continuous functions on $[0,2 \pi]$

- We have seen that $C[0,2 \pi]$ is a vector space with the integral inner product.
- With respect to this inner product, if W is a finite-dimensional subspace of $C[0,2 \pi]$, then the distance from any f to W is given by $\left\|f-\operatorname{proj}_{W}(f)\right\|$.
- We have a known list of orthogonal functions in $C[0,2 \pi]$:

$$
1, \sin (x), \sin (2 x), \ldots \cos (x), \cos (2 x), \ldots
$$

- Let W_{n} be the subspace generated by

$$
1, \sin (x), \ldots, \sin (n x), \cos (x), \ldots, \cos (n x)
$$

inside $C[0,2 \pi]$.

- Since the generators of each W_{n} form an orthogonal set, they are linearly independent and it is easy to compute the projection onto W_{n}.
- For any $f \in C[0,2 \pi]$ we compute

$$
a_{0}=\frac{\langle f, 1\rangle}{\|1\|^{2}}, a_{k}=\frac{\langle f, \sin (k x)\rangle}{\|\sin (k x)\|^{2}} \text { and } b_{k}=\frac{\langle f, \cos (k x)\rangle}{\|\cos (k x)\|^{2}} .
$$

for all $k \geq 1$.

Main Theorem

Theorem

If $f \in C[0,2 \pi]$ then $f(x)$ converges to

$$
a_{0}+a_{1} \sin (x)+a_{2} \sin (2 x)+\ldots+b_{1} \cos (x)+b_{2} \cos (2 x)+\ldots
$$

with respect to $\|\cdot\|$.

Example

If W is the subspace generated by

$$
1, \sin (x), \sin (2 x), \ldots, \cos (x), \cos (2 x), \ldots
$$

then by the Main Theorem, $W^{\perp}=0$. But 0^{\perp} is all of $C[0,2 \pi]$. W is not all of $C[0,2 \pi]$ since $x \notin W$ so we have an example of $\left(W^{\perp}\right)^{\perp} \neq W$.

Test Average and Median: 14

Test Score	Number
$20-25$	20
$17-19$	32
$14-16$	31
$11-13$	38
Below 10	34
DNW	22

