Suppose that $\{u_1, u_2, ..., u_n\}$ is a basis for an inner product space *V*.

- Start with u_1 and "normalize" it (divide by its length so the result is of length 1); call this v_1 .
- **2** Consider u_2 and form $u'_2 = u_2 proj_{W_1}u_2$ where W_1 is the span of v_1 .
- Now normalize u₂ and call this v₂. Let W₂ be the span of v₁, v₂.
- Consider u_3 and form $u'_3 = u_3 proj_{W_2}u_3$.
- Solution Normalize u'_3 and call it v_3 . Let W_3 be the space spanned by v_1, v_2, v_3 .
- Solution Repeat this process by iteratively forming v_i and W_i until i = n.
- $\{v_1, v_2, \ldots, v_n\}$ forms an orthonormal basis for *V*.

As a consequence of the Gram-Schmidt process, one can prove:

Theorem

If A is an $m \times n$ matrix with linearly independent column vectors then one can find Q, an $m \times n$ matrix with orthonormal column vectors and R, an $n \times n$ invertible upper triangular matrix such that

$$A = QR$$

Orthogonality in complex inner product spaces is nearly identical to the real case. In particular,

- the definitions of orthogonal vectors, orthogonal sets, orthonormal sets and orthonormal bases are the same.
- the Pythagorean Theorem holds as do all the main theorems from section 6.3.
- the Gram-Schmidt process is still valid.

Theorem

Suppose that W is a finite-dimensional subspace of an inner product space V. Then for any $u \in V$, $proj_W u$ is the closest vector in W to u; that is, if $w \in W$ is any vector other than $proj_W u$ then

 $||u - w|| > ||u - proj_W u||$

- Suppose that A is an m × n matrix and b is in Rⁿ. The linear equations Ax = b may or may not have a solution.
- The question is: find *x* so that *Ax* is closest to *b*.
- As *x* varies over all of *Rⁿ*, *Ax* varies over the columnspace of *A* so we are really asking for *x* such that *Ax* equals the projection of *b* on the columnspace.
- In fact, we can find the necessary x by solving $A^T A x = A^T b$. These are called the normal equations.