The Gram-Schmidt process

Suppose that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for an inner product space V.
(1) Start with u_{1} and "normalize" it (divide by its length so the result is of length 1); call this v_{1}.
(2) Consider u_{2} and form $u_{2}^{\prime}=u_{2}-\operatorname{proj}_{W_{1}} u_{2}$ where W_{1} is the span of v_{1}.
(3) Now normalize u_{2}^{\prime} and call this v_{2}. Let W_{2} be the span of v_{1}, v_{2}.
(4) Consider u_{3} and form $u_{3}^{\prime}=u_{3}-\operatorname{proj}_{w_{2}} u_{3}$.
(5) Normalize u_{3}^{\prime} and call it v_{3}. Let W_{3} be the space spanned by v_{1}, v_{2}, v_{3}.
(6) Repeat this process by iteratively forming v_{i} and W_{i} until $i=n$.
(7) $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ forms an orthonormal basis for V.

QR-decomposition

As a consequence of the Gram-Schmidt process, one can prove:

Theorem

If A is an $m \times n$ matrix with linearly independent column vectors then one can find Q, an $m \times n$ matrix with orthonormal column vectors and R, an $n \times n$ invertible upper triangular matrix such that

$$
A=Q R
$$

Orthogonality and complex inner product spaces

Orthogonality in complex inner product spaces is nearly identical to the real case. In particular,

- the definitions of orthogonal vectors, orthogonal sets, orthonormal sets and orthonormal bases are the same.
- the Pythagorean Theorem holds as do all the main theorems from section 6.3.
- the Gram-Schmidt process is still valid.

Projection as best approximation

Theorem

Suppose that W is a finite-dimensional subspace of an inner product space V. Then for any $u \in V$, projwu is the closest vector in W to u; that is, if $w \in W$ is any vector other than projwu then

$$
\|u-w\|>\left\|u-\operatorname{proj}_{w} u\right\|
$$

Least squares problem

- Suppose that A is an $m \times n$ matrix and b is in R^{n}. The linear equations $A x=b$ may or may not have a solution.
- The question is: find x so that $A x$ is closest to b.
- As x varies over all of $R^{n}, A x$ varies over the columnspace of A so we are really asking for x such that $A x$ equals the projection of b on the columnspace.
- In fact, we can find the necessary x by solving $A^{T} A x=A^{T} b$. These are called the normal equations.

