Orthogonal sets

Definition

A set S of non-zero vectors in an inner product space is called

- orthogonal if every distinct pair of vectors in S is orthogonal.
- It is called orthonormal if it is orthogonal and every vector has length one.
- It is called an orthonormal (or orthogonal) basis if it is orthonormal (or orthogonal) and a basis.

Theorem (6.3.1)

If S is an orthogonal set of non-zero vectors in an inner product space then S is linearly independent.

Projections

Theorem (6.3.3)

If W is a finite-dimensional subspace of an inner product space V then every vector $u \in V$ can be written as

$$
u=w_{1}+w_{2}
$$

where $w_{1} \in W$ and $w_{2} \in W^{\perp}$. In fact, this representation of u is unique.

Notation

In the previous theorem, w_{1} is called the orthogonal projection of u on W and is written $\operatorname{proj}_{W}(u)$.

Orthogonal projections

Theorem

If $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is an orthogonal basis for a subspace W of an inner product space V then for any $u \in V$,

$$
\begin{align*}
\operatorname{proj}_{W}(u) & =\frac{\left\langle u, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\ldots+\frac{\left\langle u, v_{r}\right\rangle}{\left\|v_{r}\right\|^{2}} v_{r} \tag{1}\\
& =\operatorname{proj}_{v_{1}} u+\ldots+\operatorname{proj}_{v_{r}} u
\end{align*}
$$

Theorem (6.3.5)

Every non-zero finite-dimensional inner product space has an orthonormal basis.

The Gram-Schmidt process

Suppose that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for an inner product space V.
(1) Start with u_{1}; call this v_{1}.
(2) Consider u_{2} and form $v_{2}=u_{2}-\operatorname{proj}_{W_{1}} u_{2}$ where W_{1} is the span of v_{1}.
(3) Let W_{2} be the span of v_{1}, v_{2}.
(4) Consider u_{3} and form $v_{3}=u_{3}-\operatorname{proj}_{w_{2}} u_{3}$.
(5) Let W_{3} be the space spanned by v_{1}, v_{2}, v_{3}.
(6) Repeat this process by iteratively forming v_{i} and W_{i} until $i=n$.
(7) $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ forms an orthogonal basis for V. If you want an orthonormal basis, normalize each v_{i}.

QR-decomposition

As a consequence of the Gram-Schmidt process, one can prove:

Theorem

If A is an $m \times n$ matrix with linearly independent column vectors then one can find Q, an $m \times n$ matrix with orthonormal column vectors and R, an $n \times n$ invertible upper triangular matrix such that

$$
A=Q R
$$

Orthogonality and complex inner product spaces

Orthogonality in complex inner product spaces is nearly identical to the real case (see discussion on pages 549 - 551). In particular,

- the definitions of orthogonal vectors, orthogonal sets, orthonormal sets and orthonormal bases are the same.
- the Pythagorean Theorem holds as do all the main theorems from section 6.3.
- the Gram-Schmidt process is still valid.

