Definition

If *W* is a subspace of an inner product space *V* then we say that $v \in V$ is orthogonal to *W* if *v* is orthogonal to every $w \in W$. The set of all $v \in V$ which are orthogonal to *W* is called the orthogonal complement of *W* and is written W^{\perp} .

Theorem

If W is a subspace of an inner product space V then

- W^{\perp} is a subspace of V,
- 2 W and W^{\perp} have only 0 in their intersection, and
- **③** *if V is finite-dimensional then* $(W^{\perp})^{\perp} = W$.

Theorem

Suppose that A is any $m \times n$ matrix. Then

- the nullspace of A and the row space of A are orthogonal complements in Rⁿ with respect to the usual (Euclidean) inner product on Rⁿ.
- the nullspace of A^T and the column space of A are orthogonal complements in R^m with respect to the Euclidean inner product on R^m.

Definition

A set S of non-zero vectors in an inner product space is called

- orthogonal if every distinct pair of vectors in *S* is orthogonal.
- It is called orthonormal if it is orthogonal and every vector has length one.
- It is called an orthonormal (or orthogonal) basis if it is orthonormal (or orthogonal) and a basis.

Theorem (6.3.1)

If S is an orthogonal set of non-zero vectors in an inner product space then S is linearly independent.

Theorem (6.3.2)

(a) If $S = \{v_1, v_2, ..., v_n\}$ is an orthogonal basis for an inner product space V then for every $u \in V$,

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|^2} v_2 + \ldots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$$

(b) If $S = \{v_1, v_2, ..., v_n\}$ is an orthonormal basis for an inner product space V then for every $u \in V$,

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \ldots + \langle u, v_n \rangle v_n$$

Theorem

If S is an orthonormal basis for an n-dimensional inner product space V and then for every $u, v \in V$, if

$$u = (u_1, u_2, \dots, u_n)_S$$
 and $v = (v_1, v_2, \dots, v_n)_S$

then

$$||u|| = \sqrt{u_1^2 + u_2^2 + \ldots + u_n^2}$$

$$d(u, v) = \sqrt{(u_1 - v_1)^2 + \ldots + (u_n - v_n)^2}$$

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

Theorem (6.3.3)

If W is a finite-dimensional subspace of an inner product space V then every vector $u \in V$ can be written as

 $u = w_1 + w_2$

where $w_1 \in W$ and $w_2 \in W^{\perp}$. In fact, this representation of u is unique.

Notation

In the previous theorem, w_1 is called the orthogonal projection of u on W and is written $proj_W(u)$.

Theorem

If $\{v_1, v_2, \ldots, v_r\}$ is an orthonormal basis for a subspace W of an inner product space V then for any $u \in V$,

 $proj_W(u) = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \ldots + \langle u, v_r \rangle v_r$

Theorem (6.3.5)

Every non-zero finite-dimensional inner product space has an orthonormal basis.