Orthogonal complement

Definition

If W is a subspace of an inner product space V then we say that $v \in V$ is orthogonal to W if v is orthogonal to every $w \in W$. The set of all $v \in V$ which are orthogonal to W is called the orthogonal complement of W and is written W^{\perp}.

Theorem

If W is a subspace of an inner product space V then
(1) W^{\perp} is a subspace of V,
(2) W and W^{\perp} have only 0 in their intersection, and
(3) if V is finite-dimensional then $\left(W^{\perp}\right)^{\perp}=W$.

Connection with matrices

Theorem

Suppose that A is any $m \times n$ matrix. Then
(1) the nullspace of A and the row space of A are orthogonal complements in R^{n} with respect to the usual (Euclidean) inner product on R^{n}.
(2) the nullspace of A^{T} and the column space of A are orthogonal complements in R^{m} with respect to the Euclidean inner product on R^{m}.

Orthogonal sets

Definition

A set S of non-zero vectors in an inner product space is called

- orthogonal if every distinct pair of vectors in S is orthogonal.
- It is called orthonormal if it is orthogonal and every vector has length one.
- It is called an orthonormal (or orthogonal) basis if it is orthonormal (or orthogonal) and a basis.

Theorem (6.3.1)

If S is an orthogonal set of non-zero vectors in an inner product space then S is linearly independent.

Properties of orthonormal bases

Theorem (6.3.2)

(a) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthogonal basis for an inner product space V then for every $u \in V$,

$$
u=\frac{\left\langle u, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle u, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}+\ldots+\frac{\left\langle u, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}} v_{n}
$$

(b)If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis for an inner product space V then for every $u \in V$,

$$
u=\left\langle u, v_{1}\right\rangle v_{1}+\left\langle u, v_{2}\right\rangle v_{2}+\ldots+\left\langle u, v_{n}\right\rangle v_{n}
$$

Properties of orthonormal bases, cont'd

Theorem

If S is an orthonormal basis for an n-dimensional inner product space V and then for every $u, v \in V$, if

$$
u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)_{S} \text { and } v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)_{S}
$$

then
(1) $\|u\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\ldots+u_{n}^{2}}$
(2) $d(u, v)=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\ldots\left(u_{n}-v_{n}\right)^{2}}$
(c) $\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}$

Projections

Theorem (6.3.3)

If W is a finite-dimensional subspace of an inner product space V then every vector $u \in V$ can be written as

$$
u=w_{1}+w_{2}
$$

where $w_{1} \in W$ and $w_{2} \in W^{\perp}$. In fact, this representation of u is unique.

Notation

In the previous theorem, w_{1} is called the orthogonal projection of u on W and is written $\operatorname{proj}_{W}(u)$.

Finding orthonormal bases

Theorem

If $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is an orthonormal basis for a subspace W of an inner product space V then for any $u \in V$,

$$
\operatorname{proj}_{W}(u)=\left\langle u, v_{1}\right\rangle v_{1}+\left\langle u, v_{2}\right\rangle v_{2}+\ldots+\left\langle u, v_{r}\right\rangle v_{r}
$$

Theorem (6.3.5)

Every non-zero finite-dimensional inner product space has an orthonormal basis.

