Definition

An inner product on a complex vector space *V* is a function that associates a complex number $\langle u, v \rangle$ to each pair of vectors $u, v \in V$ such that the following axioms are satisfied, for every u, v and w in *V*, and scalar *k*:

$$(\mathbf{U},\mathbf{V}\rangle = \overline{\langle \mathbf{V},\mathbf{U}\rangle},$$

$$(\boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w}) = \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle,$$

$$(ku), v \rangle = k \langle u, v \rangle, and$$

• $\langle u, u \rangle \ge 0$. Moreover $\langle u, u \rangle = 0$ iff u = 0.

V together with an inner product is called a complex inner product space.

The definition of norm and distance in a complex inner product space is the same as in the real case.

Orthogonal complement

Definition

- If *u* and *v* are vectors in an inner product space then we say that *u* and *v* are orthogonal if $\langle u, v \rangle = 0$.
- If W is a subspace of an inner product space V then we say that v ∈ V is orthogonal to W if v is orthogonal to every w ∈ W. The set of all v ∈ V which are orthogonal to W is called the orthogonal complement of W and is written W[⊥].

Theorem

If W is a subspace of an inner product space V then

- W^{\perp} is a subspace of V,
- 2 W and W^{\perp} have only 0 in their intersection, and
- **3** if V is finite-dimensional then $(W^{\perp})^{\perp} = W$.

Theorem

Suppose that A is any $m \times n$ matrix. Then

- the nullspace of A and the row space of A are orthogonal complements in Rⁿ with respect to the usual (Euclidean) inner product on Rⁿ.
- the nullspace of A^T and the column space of A are orthogonal complements in R^m with respect to the Euclidean inner product on R^m.

Definition

A set *S* of non-zero vectors in an inner product space is called orthogonal if every distinct pair of vectors in *S* is orthogonal. *S* is called orthonormal if it is orthogonal and every vector has length one.

Theorem (6.3.1)

If S is an orthogonal set of non-zero vectors in an inner product space then S is linearly independent.

Theorem (6.3.2)

(a) If $S = \{v_1, v_2, ..., v_n\}$ is an orthogonal basis for an inner product space V then for every $u \in V$,

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|} + \ldots + \frac{\langle u, v_n \rangle}{\|v_n\|} v_n$$

(b) If $S = \{v_1, v_2, ..., v_n\}$ is an orthonormal basis for an inner product space V then for every $u \in V$,

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \ldots + \langle u, v_n \rangle v_n$$

Theorem

If S is an orthonormal basis for an n-dimensional inner product space V and then for every $u, v \in V$, if

$$u = (u_1, u_2, \dots, u_n)_S$$
 and $v = (v_1, v_2, \dots, v_n)_S$

then

$$||u|| = \sqrt{u_1^2 + u_2^2 + \ldots + u_n^2}$$

$$d(u, v) = \sqrt{(u_1 - v_1)^2 + \ldots + (u_n - v_n)^2}$$

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$